

Appstate NEAT

Appalachian State University’s networked energy appliance translator

Contents:

	Introductions
	Who We Are

	Why We’re Doing This Project

	Getting Started
	Developers

	Contributing

	Extending NEAT

	End Users

	Architecture
	Records

	Engine

	Schedulers

	Requesters

	Translators

	Device Types

	Pipes

	NEAT Package
	Module contents

	Subpackages

	Submodules

	neat.const module

	neat.client module

	neat.engine module

	neat.device module

Indices and tables

	Index

	Module Index

	Search Page

Introductions

	Authors

	Sierra Milosh,
Stephen Bunn,
Nathan Davis,
James Ward

Who We Are

We are two senior and two graduate level students at Appalachian State University under the SSTEM NSF funded scholarship. Each semester, we get to choose a research project to work on with other students from the SSTEM program. This semester, we chose to help create a dashboard for a student-run, student-funded group on campus called the Renewable Energy Initiaitve.

Why We’re Doing This Project

The Renewable Energy Initiative at Appalachian State University gets a $5, self-imposed fee from each student per semester to put towards renewable energy systems on campus. Recently, the REI passed a referendum that required each new project proposal include in the plan and budget a data monitoring system.
Over the past few years, the REI has been putting a lot more time, effort, and money into monitoring all of the renewable energy systems on campus, including PV (photovoltaic or solar) systems, solar thermal systems, and a wind turbine (previously the largest turbine in North Carolina, to boot). We want to be able to track data on each system for several reasons:

	So that we can see when a system isn’t running properly and begin to address the problem. The monitoring systems track anywhere between 10 and 50 points of data per device, so the ability to see both live and historical data allows for a more comprehensive analysis of what might be going wrong within the system.

	So that we can use the data to tell a story to people. We want our students to be involved with sustainability on campus, so using real numbers to tell a story about our renewable energy systems on campus (that their student funds have paid for) is on the top of our priority list. We would like to be able to talk about how much energy each system is producing, and how that energy production ranks among the other renewable energy systems on campus.

	So that we have easily accessible data to be used for reports. Appalachian’s commitment to sustainability is ranked among hundreds of other universities in the country through massive reports like the STARS report and the Greenhouse Gas Inventory. We would like to be able to go in and easily access data to fill in these comprehensive reports.

But primarily, the goal of the REI is to get students involved with renewable energy that they are funding on campus. We want to have clean, historical, and live data to bring it down a level and talk to students about what is happening on their campus.

Currently, the Renewable Energy Initiative is pouring in $10,000 from our $150,000 budget to (unnamed company) to create a dashboard that displays the data from our systems on campus in understandable graphs. The REI is unsatisfied with the current company, as:

	Data is not technically live (it uploads via FTP every 15 minutes).

	The graphs are not very customizable – The user cannot go in and add whichever features they please to any graph – They instead have to set up a call with (unnamed company) to try to get those features added, and (unnamed company) does not always know how to add the desired features.

	The REI has to create virtual meters because the (unnamed company) does not support certain devices – The REI had to consolidate all of the information into one big table with all of the desired devices and units.

Getting Started

Developers

The following subsections detail what is required for various tasks during development.

Licensing

The neat framework is licensed under the GNU GPLv3 [https://www.gnu.org/licenses/gpl-3.0.en.html] license.
This is a strong copyleft license which basically means that permissions are conditioned on making available complete source code of licensed works and modifications (including larger works).
This license was chosen with upmost care as we feel that the potential of this project may encourage future use of renewable energy appliances in conjunction with this system. We found our decision on the basis that any form of software built to aid the future of renewable energy adoption should be free and open to the public for consumption.

Versioning

The neat framework strictly follows Semantic Versioning 2.0.0 [http://semver.org] as proposed by Tom Preston-Werner.
The in-house development period is to follow the 0.x.x standard until the initial release of a full scale product (at which time will change to its first major release).

Coding Conventions

NEAT source follows the PEP8 - Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/] the more recently named pycodestyle [https://pypi.python.org/pypi/pycodestyle].
The only exception to this style guide is the rule on line length [https://www.python.org/dev/peps/pep-0008/#maximum-line-length]. This rule has been omitted simply because of its occasional annoyance.
Code written in in this project should still try to adhere to the 79 character limit while documentation should stay under the 72 character limit.

You can disable the checking of line length by passing the error code E501 as a value into the ignore list of pep8. For example pep8 --ignore=E501 ./.
We highly recommend you install a linter plugin for you editor that follows the pycodestyle (pep8) format.

Documentation Conventions

In-code documentation utilizes Python’s docstrings but does not follow PEP 257 [https://www.python.org/dev/peps/pep-0257/].
Instead, NEAT follows Sphinx’s info field lists [http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists] as its docstring format. Please adhere to this standard as future documentation builds become more and more difficult to accurately make the more deviations are made away from this format.

In addition, Python source files identify themselves using the following header.

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 {{author}} ({{contact}})
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

	Where the following apply:

	
	{{author}}

	The initial author of the file

	{{contact}}

	The contact email for the initial author of the file

We understand that this header is a pain to manually add on each commit.
That is why we suggest you use a modern code editor such as Sublime Text 3 [https://www.sublimetext.com/3] or more preferably Atom [https://atom.io/] and utilize their respective file header plugins FileHeader [https://packagecontrol.io/packages/FileHeader] and file-header [https://atom.io/packages/file-header].
Please follow this standard as it makes documentation 10x easier for current and future documentation systems.

NEAT depends on Sphinx [http://www.sphinx-doc.org/en/stable/] as its documentation builder.
This requires the sphinx toolkit to be installed on the user’s system which is extremely easy to do.
By executing the following command outside of any Python virtual environments will ensure that the latest version of the Sphinx toolkit (and its dependencies) is installed and available on your system.

pip install sphinx

This dependency is also already listed in the project’s requirements.txt.

After you have the Sphinx toolkit, documentation can be built by executing the make html command within the documentation directory (docs).
However, changes outside of autodoc, which manages in-code docstrings, need to be written in reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] and pointed to by the index.rst.
For more information, simply go through Sphinx’s First Steps with Sphinx [http://www.sphinx-doc.org/en/stable/tutorial.html].

Testing Conventions

NEAT tests are written using Python’s standard unittest [https://docs.python.org/3.6/library/unittest.html] module.
However, tests are executed via the nose [https://nose.readthedocs.io/en/latest/] framework.

Unittests for neat require both nose and codecov [https://pypi.python.org/pypi/codecov].
These packages are not listed
Tests should be run from the root directory of the repository using the following command:

nosetests --with-coverage

The .coveragerc file defines what folders to run tests for and what files to avoid testing.

We use a continuous integration system, TravisCI [https://travis-ci.org/], to continually check test cases on public pushes to the GitHub repository.
We also utilize codecov, which presents code coverage as reported by TravisCI after each public push. The configuration for continuous integration can be found in the standard .travis.yml file, found in the root of the repository.

Logging Conventions

Logging is enabled by default and runs on the logging.Logger DEBUG level.
The default logging format is:

%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s<%(funcName)s> %(message)s

The neat framework also comes with a custom logging exception handler which logs exceptions.
All of these logging properties can be modified by changing the values of the neat constants:

import logging
import neat

log any exceptions that occur
neat.const.log_exceptions = True

update the logging level so just INFO and greater logs are displayed
neat.const.log_level = logging.INFO

update the logging format so just the message is displayed
neat.const.log_format = '%(message)s'

Logs are stored on stdout as well as stored in a rotating file handler.
A certain days logs are stored under the /logs/{year}/{month} directory in the {month}{day}{year}.log files.
For example, the following log file path is for logs created on April 1, 2017:

/logs/2017/4/04012017.log

Log files are split every 1024 * 1024 bytes.

	Logs should primarily relay information about signal calls, and record transforms on the DEBUG level via logging.debug('...').

	Any information about pipe connection status or general startup/shutdown information should be on the INFO level via logging.info('...').

	Invalid input, data, configuration that doesn’t cause the runtime to crash should be on the WARNING level via logging.warning('...').

	Any invalid state or unexpected error that causes the runtime to skip over some important logic should be on the ERROR level via logging.error('...').

	Any state causing the framework to crash should be on the CRITICAL level via logging.critical('...').

	Finally, any caught exceptions that are used as quick fixes to errors should be logged on the EXCEPTION level via log.exception('...').

Log lines typically also have ... appended to the end in order to accomodate external logging parsers.
This line ending is separated from the message of the log line by a space.

Installing Dependencies

NEAT depends on several packages provided by PyPi [https://pypi.python.org/pypi] which need to be installed for NEAT to function correctly. These should be installed into a virtual Python environment by using the virtualenv package. To set this up, first install the virtualenv and virtualenvwrapper packages via pip.

pip install virtualenv virtualenvwrapper

Note, if working on Windows, it may be necessary to install the virtualenvwrapper-win module as well.
This simply takes the functionality of virtualenvwrapper and translates it to batch scripts which Windows systems can run.

After installing these packages you should now have access to several scripts such as mkvirtualenv, workon, rmvirtualenv, and others [https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html].
However, it may also be necessary to set a environmental variable to tell the installed scripts where to setup all virtual environments. This is typically done under the WORKON_HOME variable.

export WORKON_HOME=~/.virtualenvs/

This indicates that all virtual environments will be built and stored under the directory ~/.virtualenvs/

NEAT is built and developed using Python 3.5+ [https://www.python.org/downloads/], so it may be necessary to specify the version of Python to use when creating a virtual environment.

mkvirtualenv --python=/usr/bin/python3 neat

This will create and place your current shell into the context of a new virtual environment neat (if it doesn’t exist already). Note, most modern shells show an indication of what virtual environment you are currently located in. For example, a common shell prompt…

/home/r/Documents/Github/neat $

may be transformed to something resembling…

(neat) /home/r/Documents/Github/neat $

Once inside of this virtual environment it is possible to install dependencies. All of NEATs dependencies are specified in the requirements.txt file located in the root of the repository. This file follows pip’s requirements file format.
The dependencies listed in this file can be automatically installed using the virtual environment’s pip script by passing the path to the requirements file after giving pip the -r flag.

pip install -r ./requirements.txt

If the pip installation goes successfully, then all listed requirements should be successfully installed to the virtual environment.
To get out of the virtual environment, simply use the deactivate command (only available inside of a virtual environment).
To re-enter a virtual environment, use the workon neat command, where neat is the name of the virtual environment you created.

In order for the pipes to function correctly, the servers for a pipe’s database is required and must be running.

	RethinkDB [https://www.rethinkdb.com/docs/install/] for the RethinkDBPipe

	MongoDB [https://www.mongodb.com/download-center?jmp=nav] for the MongoDBPipe

Contributing

The following subsections are for people who wish to contribute to the neat framework.
We assume that if you want to contribute, you will abide by the standards discussed in Developers.

Issues

Best issues are a short, self contained, correct example [http://sscce.org] of the problem.
Providing logs for when the error occured is also very helpful.

Pull Requests

All pull requests must be done on the dev [https://github.com/ritashugisha/neat/tree/dev] branch.
Pull requests on the master branch should be ignored

Extending NEAT

The following subsections detail tasks required for extending the neat framework.

New Devices

For every new type of device that doesn’t go through the Obvius, a new concrete subclass of AbstractRequester must be defined in order to retrieve the devices status.
The amazing Requests [http://docs.python-requests.org/en/master/] package is provided by default in the installation of neat as well as BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/] and lxml [http://lxml.de] for parsing XML typed content which should ease the effort of future developers.
It may also (most likely) be necessary to define a new concrete subclass of AbstractTranslator.
For each new type of device status format, a translator must be able to convert the status into a Record object for the pipes to correctly handle.

New Pipes

If other forms of storage are needed, a new concrete subclass of AbstractPipe must be defined.
These typically need to handle all the logic of starting and maintaining a connection to the database (if developing a database-based pipe) and creation and deletion of databases, tables, users and potentially entries.
The only thing provided to the database is a Record instance which must be deconstructed in however necessary to pass it through the pipe.

End Users

Typically end users should have to only configure the config file required by a client whose superclass is AbstractClient.
For example, NEAT comes with a BasicClient which uses YAML [http://yaml.org] to indicate what is required for the engine.

Starting the project can be done using a simple Python script which starts the client.

import neat
client = neat.BasicClient.from_config('PATH TO CONFIG')
client.start()

Logging and other configuration can be done by editing the constants before starting the client

import neat
import logging

neat.const.log_exceptions = True
neat.const.log_level = logging.DEBUG

In order for pipes to function correctly, the client servers for the desired pipes must be started before running the neat client.
This can be done by starting the RethinkDB and MongoDB pipes in a separate process like the following:

rethinkdb -d /path/to/rethinkdb/storage/directory
mongodb --dp-path=/path/to/mongodb/storage/directory

Architecture

The NEAT project features the main communication engine as well as several appendages including mainly schedulers, requesters, translators, and pipes. A simple communication visualization is shown in the figure below.

[image: ../_images/architecture.png]
These so called appendages are described within submodules of the main neat module as generalized in the following file structure.
As you can see, the following folder structure allows for separated logic in each of the submodules while keeping connection and communication logic within the engine:

neat
├─ const.py
├─ client.py
├─ engine.py
├─ device.py
├─ scheduler
│ ├─ __init__.py
│ ├─ _common.py
│ ├─ simple.py
│ └─ ...
├─ requester
│ ├─ __init__.py
│ ├─ _common.py
│ ├─ obvius.py
│ └─ ...
├─ translator
│ ├─ __init__.py
│ ├─ _common.py
│ ├─ obvius.py
│ └─ ...
└─ pipes
 ├─ __init__.py
 ├─ _common.py
 ├─ rethinkdb.py
 └─ ...

Submodule structure mainly includes the __init__.py and the _common.py files.
The _common.py exports an abstract class which all valid concrete classes should extend.
For example in requesters/_common.py an abstract class AbstractRequester is exported which the ObviusRequester extends.
The exported classes from the submodule should include the abstract class as well as any other concrete classes for that submodule.
Because of this, concrete classes must be uniquely named and preferably have a matching suffix to their superclass.
For example, as previously shown the AbstractRequester is the superclass for the ObviusRequester.
The matching suffix of these two objects would in this case be Requester.
Other submodules with abstract and concrete classes should following this convention for readability reasons.

The following sections will describe in greater detail the objectives, responsibilities, and structure of the engine as well as the previously listed submodules.

Records

The generic data model which neat produces is the Record object found in models/record.py.
This object specifies the to_dict method which compresses the useful object information into a dictionary using the following format (a more formal jsonschema [http://json-schema.org/] can be found in schemas/record.json):

{
 "meta": {},
 "name": "primary key unique name",
 "device_name": "human readable non-unique name",
 "type": "DEVICE_TYPE",
 "timestamp": 1234567890,
 "coord": {
 "lon": 123.456789,
 "lat": -123.456789
 },
 "data": {
 "0": {
 "name": "unreliable-name",
 "value": 12.3456789,
 "units": "PINT_UNIT"
 }
 },
 "parsed": {
 "reliable-name": {
 "value": 12.3456789,
 "unit": "PINT_UNIT"
 }
 }
}

This top-level json object is built from the Record object in models/record.py.
The shorter json objects in the data and parsed fields are built from the RecordPoint object also in models/record.py.
It’s easy to see that the record point stores information about a data point such as the name, value, and an understandable unit expression from the pint [https://pint.readthedocs.io/] module’s vanilla unit registry.

Engine

The engine’s purpose is to manage communication between schedulers, requesters, translators, and pipes.
It does this by hooking into the schedulers, requesters, and translators blinker [https://pythonhosted.org/blinker/] signal in order to capture asynchronous output from the different running processes.

The engine should be accessed directly from the top-level module as the Engine class.
Schedulers are mapped 1 to 1 with their scheduled requesters in the engine’s private _register attribute on initialization of the engine.
Along with this mapping the desired pipes are also passed into the engine on initialization as a list of pipe objects.
Note in the following intialization example that a single SimpleDelayScheduler is mapped to a ObviusRequester for the engine’s register while a single RethinkDBPipe is given engine.

import neat
engine = neat.Engine({
 neat.scheduler.SimpleDelayScheduler(...):
 neat.requester.ObviusRequester(...)
}, pipes=[neat.pipe.RethinkDBPipe(...)])

The engine’s logic flow works as the following:

	Schedulers are started as their own child processes of the engine

	A scheduler communicates over its signal when its requester should run

	Engine intercepts the scheduler’s signal with the on_scheduled method

	Engine determines what requester should run and calls the request() method

	A requester communicates over its signal when it receives data

	Engine intercepts the requester’s signal with the on_data method

	Engine determines which translator is capable of translating the received data and calls the translate method

	A translator communicates over its signal when the Record model has been built successfully

	Engine intercepts the translator’s signal with the on_record method

	Engine throws the record into each of the valid pipes via the accept() method

	Pipes handle any necessary storage logic

Schedulers

The purpose of a scheduler is to provide a way of telling the engine when a requester should be called.
Because these schedulers must execute with their own specific time-frames they are subclasses of AbstractScheduler which itself is a subclass of multiprocessing.Process allowing these schedulers to be run as children processes of the process containing neat’s engine.
The AbstractScheduler provides an anonymous blinker signal attribute and requires that concrete classes implement a run() method which starts (most likely) an infinite loop of request scheduling logic.

Although new schedulers may need to take into account device specific refresh rates or communication rules, most of the time the best option is to use the already provided SimpleDelayScheduler from scheduler/simple.py which employs a delay by sleeping the process for a specified second delay.

Note

Because schedulers are subclasses of multiprocessing.Process if an __init__ method is required of a concrete scheduler, the superclass’s __init__ must be called before any attribute assignment.

For example, the SimpleDelayScheduler requires an input parameter to specify the second delay which should be used.
The following simplified class snippet was used:

class SimpleDelayScheduler(AbstractScheduler):

 def __init__(self, delay: float=1.0):
 super().__init__()
 self.delay = delay

Requesters

The purpose of a requester is to ensure that some device’s state is retrieved and passed back to the engine.
As opposed to schedulers, requesters are not their own spawned processes, instead they run alongside the engine when triggered from the on_scheduled signal.

Concrete requesters must extend from AbstractRequester which also provides an abstract blinker signal and requires that the requester implements a method request() which sends some request to a device for current status.
In order to keep blocking to a minimum, requesters utilize the requests [http://docs.python-requests.org/en/master/] module and specify request hooks to be most optimal in not blocking engine execution.
Once the data has been retrieved the requester instance as well as the retrieved data and any additional named parameters to the requester’s initialization is sent back over the requesters signal which can then be caught by the engine.
These additional parameters are typically Record fields that need to be user-specified due to the device not containing that information.
An example of this is typically the longitude and latitude of the device since many devices do not keep track of that information.

Take the following requester initialization for example:

requester = neat.requester.ObviusRequester(
 obvius_ip='123.123.123.123',
 obvius_port=80,
 obvius_user='SOMEUSER',
 obvius_pass='SOMEPASS',
 name='DEVICE_NAME',
 type='DEVICE_TYPE',
 lat=123.4567890,
 lon=123.4567890
)

In this instance, although ObviusRequester cannot handle lat and lon in requester initialization, it still requires those fields in order for the translator to have those fields handy when building the Record.
Therefore, the extraneous fields which cannot be used in initialization for the requester are included in the signal along with the data and the requester instance.

Translators

The purpose of a translator is to provide a simple interface to create a Record object from some data retrieved by a requester.
A single given translator may be acceptable for translating multiple formats of data.
This is specified in the supported_requesters attribute of a concrete translator as a list of string class names of the supported requesters.

Note

The current method of translator discovery is naive as it returns the first translator is sees which specifies that it can handle data from a specific requester.
This process can be seen in translators/__init__.py as get_translator().

Valid concrete translators must extend from AbstractTranslator as usual.
AbstractTranslator provides an anonymous blinker signal and requires a translate() method for synchronously creating and sending the built Record object over the provided signal.

Note the engine lazily instantiates the translators only when they are required.
Therefore, initialization parameters to concrete translators is currently not supported in the neat engine.

Device Types

The purpose of a device type is to ensure that the data comming in from multiple different types of devices from multiple requesters can have their points generalized into the parsed field of a Record.
The allowed device types are stored in the device.py and are encapsulated within the DeviceType enumeration along with a unique hexadecimal id and an instance to the device.
Correct parsing of the data fields currently relies on the parsed fields contained within the config.yml.
With the addition of new device types and different requesters that do no utilize the Obvius’ device points, it may be neccessary to change the logic of the parse() function.

The parse() function takes the populated data fields along with the parsed config configuration to determine what attributes of the record’s data to load and convert to a uniform pint [https://pint.readthedocs.io/en/0.7.2/] unit.
This information is the placed within the parsed dictionary of the Record which can then be serialized for the pipe’s usage.

Pipes

The purpose of a pipe is to provide any and all logic for handling the storage created records into various different formats.
The provided concrete pipe is a RethinkDBPipe which places records into a rethinkdb [https://www.rethinkdb.com/] database as they come in.

Valid pipes must extend from AbstractPipe which provides an anonymous blinker signal and requires that the pipe have an accept() method which accepts a single Record object.
Once a record has been successfully committed to wherever it needs to be, the pipe must send itself and the record over the provided signal where the engine can intercept the signal in the on_complete signal.

NEAT Package

Module contents

Subpackages

	neat.models package
	Module contents

	Submodules

	neat.models.record module

	neat.scheduler package
	Module contents

	Submodules

	neat.scheduler.simple module

	neat.requester package
	Module contents

	Submodules

	neat.requester.obvius module

	neat.translator package
	Module contents

	Submodules

	neat.translator.obvius module

	neat.pipe package
	Module contents

	Submodules

	neat.pipe.mongodb module

	neat.pipe.rethinkdb module

Submodules

neat.const module

Module constants object.

	
exception neat.const.ModuleConstantException(message: str, code: int = None)

	Bases: Exception

Custom exception for constants namespace.

neat.client module

	
class neat.client.AbstractClient[source]

	Bases: object

The basic class for all valid clients.

	
static from_config(config_path: str)[source]

	Creates a client from a config file.

	Parameters

	config (str) – The path of the config file to load from

	Returns

	An instance of the created client

	Return type

	AbstractClient

	
start() → None[source]

	Starts the engine.

	Returns

	Does not return

	Return type

	None

	
class neat.client.BasicClient(config: dict)[source]

	Bases: neat.client.AbstractClient

A very basic client for engine initalization.

	
static from_config(config: str)[source]

	Creates a BasicClient from a config file.

	Parameters

	config (str) – The path of the config file to load from

	Returns

	An instance of the created BasicClient

	Return type

	BasicClient

	
start() → None[source]

	Starts the engine.

	Returns

	Does not return

	Return type

	None

neat.engine module

	
class neat.engine.Engine(register: Dict[neat.scheduler._common.AbstractScheduler, neat.requester._common.AbstractRequester] = {}, pipes: List[neat.pipe._common.AbstractPipe] = [])[source]

	Bases: object

Provides communication between all of the subpackages.

	
on_commit(piper: neat.pipe._common.AbstractPipe, record: neat.models.record.Record) → None[source]

	Event handler for when pipes finish writing out a record.

	Parameters

	
	piper (AbstractPipe) – The pipe who wrote the record out

	record (Record) – The record that was written

	Returns

	Does not return

	Return type

	None

	
on_data(requester: neat.requester._common.AbstractRequester, data: str, meta: dict) → None[source]

	Event handler for when requesters get a response from their device.

	Parameters

	
	requester (AbstractRequester) – The requester who retrieved the data

	data (str) – The data returned from the device

	meta (dict) – Any additional fields required to properly interpret data

	Returns

	Does not return

	Return type

	None

	
on_record(record: neat.models.record.Record) → None[source]

	Event handler for when translators finish translation of some data.

	Parameters

	record (Record) – The translated record

	Returns

	Does not return

	Return type

	None

	
on_scheduled(scheduler: neat.scheduler._common.AbstractScheduler) → None[source]

	Event handler for when schedulers trigger their mapped requesters.

	Parameters

	scheduler (AbstractScheduler) – The scheduler that needs to run its requester

	Returns

	Does not return

	Return type

	None

	
on_start = <blinker.base.Signal object>

	

	
on_stop = <blinker.base.Signal object>

	

	
pipes

	The list of pipe objects that are handling created records.

	
register

	The mapping of schedulers to requesters.

	
start() → None[source]

	Starts the engine.

	Returns

	Does not return

	Return type

	None

	
stop() → None[source]

	Stops the engine.

	Returns

	Does not return

	Return type

	None

	
translators

	The list of translator objects that have been needed.

neat.device module

	
class neat.device.AbstractDevice[source]

	Bases: object

The base class for all valid devices.

	
fields

	The expected device fields.

	
name

	The name of the device.

	
parse(record: neat.models.record.Record) → Dict[str, neat.models.record.RecordPoint][source]

	Parses a given record for the necessary device fields.

	Parameters

	record (Record) – The record to parse

	Returns

	A dictionary of field names mapped to record points

	Return type

	dict

	
ureg

	The unit registry for all devices.

	
class neat.device.DeviceType[source]

	Bases: enum.Enum

An enumeration of available device types.

Note

Maps types to instances not classes

	
ENERGY = (5, <neat.device.EnergyDevice object>)

	

	
HVAC = (2, <neat.device.HVACDevice object>)

	

	
PV = (1, <neat.device.PVDevice object>)

	

	
SOLAR_THERM = (3, <neat.device.SolarThermalDevice object>)

	

	
TEMP = (6, <neat.device.TemperatureDevice object>)

	

	
UNKNOWN = (0, <neat.device.UnknownDevice object>)

	

	
WIND = (4, <neat.device.WindDevice object>)

	

	
class neat.device.EnergyDevice[source]

	Bases: neat.device.AbstractDevice

Defines a generic energy device.

	
fields = {}

	

	
name = 'Energy Device'

	

	
class neat.device.HVACDevice[source]

	Bases: neat.device.AbstractDevice

Defines a heating, ventilation, and cooling device.

	
fields = {}

	

	
name = 'HVAC Device'

	

	
class neat.device.PVDevice[source]

	Bases: neat.device.AbstractDevice

Defines a photovoltaic device.

	
fields = {}

	

	
name = 'PV Device'

	

	
class neat.device.SolarThermalDevice[source]

	Bases: neat.device.AbstractDevice

Defines a solar thermal device.

	
fields = {'energy_rate': 'btu / hour', 'energy_total': 'megabtu', 'flow_rate': 'gallon / minute', 'return_temp': 'degF', 'supply_temp': 'degF'}

	

	
name = 'Solar Thermal Device'

	

	
class neat.device.TemperatureDevice[source]

	Bases: neat.device.AbstractDevice

Defines a generic temperature device.

	
fields = {}

	

	
name = 'Temperature Device'

	

	
class neat.device.UnknownDevice[source]

	Bases: neat.device.AbstractDevice

Defines an unknown device type.

Note

Primarily used for Obvius virtual meters

	
fields = {}

	

	
name = 'Unknown Device'

	

	
class neat.device.WindDevice[source]

	Bases: neat.device.AbstractDevice

Defines a wind based device.

	
fields = {'inverter_energy_total': 'kilowatthour', 'inverter_real': 'kilowatt', 'rotor_speed': 'rpm', 'wind_speed': 'mph'}

	

	
name = 'Wind Device'

	

neat.models package

Module contents

Submodules

neat.models.record module

	
class neat.models.record.Record(**kwargs)[source]

	Bases: neat.models._common.AbstractModel

A model representation of a record.

	
data

	The device’s raw data points.

	
device_name

	The human readable name of the device.

	
lat

	The latitude of the device.

	
lon

	The longitude of the device.

	
name

	The primary name of the device.

	
parsed

	The device’s parsed data points.

	
timestamp

	The record’s creation unix timestamp.

	
to_dict() → dict[source]

	Builds a serializable representation of the record.

	Returns

	A serializable representation of the record

	Return type

	dict

	
ttl

	The record’s time to live in seconds.

	
type

	The type of the device.

	
validate() → bool[source]

	Self validates the record.

	Returns

	True if valid, otherwise False

	Return type

	bool

	
class neat.models.record.RecordPoint(**kwargs)[source]

	Bases: object

A record point representation.

Note

Not a subclass of neat.models._common.AbstractModel

	
name

	The name of the record point.

	
number

	The number of the record point.

	
to_dict() → dict[source]

	Builds a serializable representation of the record point.

	Returns

	A serializable representation of the record point

	Return type

	dict

	
unit

	The pint unit expression of the record point.

	
value

	The value of the record point.

neat.scheduler package

Module contents

Submodules

neat.scheduler.simple module

	
class neat.scheduler.simple.SimpleDelayScheduler(delay: float = 1.0)[source]

	Bases: neat.scheduler._common.AbstractScheduler

The scheduler for simple requesters.

Note

Required, that all subclasses call super initialization

	
delay

	The delay period in between scheduled requests.

	
run() → None[source]

	Starts the infinite loop for signaling scheduled requests.

	Returns

	Does not return

	Return type

	None

neat.requester package

Module contents

Submodules

neat.requester.obvius module

	
class neat.requester.obvius.ObviusRequester(device_id: int, obvius_ip: str, obvius_user: str, obvius_pass: str, obvius_port: int = 80, timeout: int = 10, **kwargs)[source]

	Bases: neat.requester._common.AbstractRequester

The requester for the Obvius server.

	
receive(resp: requests.models.Response, *args, **kwargs) → None[source]

	The receiver of information from the requester.

	Parameters

	
	resp (requests.Response) – The response of the request

	args (list) – Extra arguments of the request

	kwargs (dict) – Extra named arguments of the request

	Returns

	Does not return

	Return type

	None

	
request() → None[source]

	Request information from the obvius.

	Returns

	Does not return

	Return type

	None

neat.translator package

Module contents

	
neat.translator.get_translator(requester_name: str) → neat.translator._common.AbstractTranslator[source]

	Tries to retrieve a supported translator given a requesters name.

	Parameters

	requester_name (str) – The requester’s class name

	Returns

	A supported translator

	Return type

	AbstractTranslator

Submodules

neat.translator.obvius module

	
class neat.translator.obvius.ObviusTranslator[source]

	Bases: neat.translator._common.AbstractTranslator

The translator for Obvius devices.

	
parser

	The xml parser to use for parsing the returned requester content.

	
supported_requesters = ('ObviusRequester',)

	

	
translate(data: str, meta: dict = {}) → None[source]

	Translates Obvius data to a record.

	Parameters

	
	data (str) – The xml returned from the Obvius endpoint

	meta (dict) – Any additional data given to the requester

	Returns

	Does not return

	Return type

	None

	
unit_map

	The mapping of Obvius units to valid pint units.

	
validate(data: str) → bool[source]

	Checks if the data from the Obvius is valid.

	Parameters

	data (str) – The data returned from a supported requester

	Returns

	True if the data is valid, otherwise False

	Return type

	bool

neat.pipe package

Module contents

Submodules

neat.pipe.mongodb module

	
class neat.pipe.mongodb.MongoDBPipe(ip: str, port: int, table: str, entry_delay: int = 600)[source]

	Bases: neat.pipe._common.AbstractPipe

A record pipe for MongoDB.

Note

Records are always placed in the neat table.

	
accept(record: neat.models.record.Record) → None[source]

	Accepts a record to be placed into the MongoDB instance.

	Parameters

	record (Record) – The record to be placed in the MongoDB instance

	Returns

	Does not return

	Return type

	None

	
client

	The client attached to the MongoDB uri.

Warning

MongoDB driver connections are not fork safe

	
db

	The database of the client to write to.

	
table

	The table of the database to write to.

	
validate() → bool[source]

	Self validates the MongoDB pipe.

	Returns

	True if the pipe is valid, otherwise False

	Return type

	bool

neat.pipe.rethinkdb module

	
class neat.pipe.rethinkdb.RethinkDBPipe(ip: str, port: int, table: str, clean_delay: int = 300)[source]

	Bases: neat.pipe._common.AbstractPipe

A record pipe for RethinkDB.

Note

Records are always placed in the neat table.

	
accept(record: neat.models.record.Record) → None[source]

	Accepts a record to be placed into the RethinkDB instance.

	Parameters

	record (Record) – The record to be placed into the RethinkDB instance

	Returns

	Does not return

	Return type

	None

	
clean() → None[source]

	Cleans dead records from the RethinkDB instance.

	Returns

	Does not return

	Return type

	None

	
connection

	The client attached to the RethinkDB uri.

Warning

RethinkDB driver connections are not thread safe

	
validate() → bool[source]

	Self validates the RethinkDB pipe.

	Returns

	True if the pipe is valid, otherwise False

	Return type

	bool

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 neat (Unix)	
 A communication framework for REI devices and database systems

 	
 	
 neat.client	

 	
 	
 neat.const	

 	
 	
 neat.device	

 	
 	
 neat.engine	

 	
 	
 neat.models	

 	
 	
 neat.models.record	

 	
 	
 neat.pipe	

 	
 	
 neat.pipe.mongodb	

 	
 	
 neat.pipe.rethinkdb	

 	
 	
 neat.requester	

 	
 	
 neat.requester.obvius	

 	
 	
 neat.scheduler	

 	
 	
 neat.scheduler.simple	

 	
 	
 neat.translator	

 	
 	
 neat.translator.obvius	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	AbstractClient (class in neat.client)

 	AbstractDevice (class in neat.device)

 	
 	accept() (neat.pipe.mongodb.MongoDBPipe method)

 	(neat.pipe.rethinkdb.RethinkDBPipe method)

B

 	
 	BasicClient (class in neat.client)

C

 	
 	clean() (neat.pipe.rethinkdb.RethinkDBPipe method)

 	
 	client (neat.pipe.mongodb.MongoDBPipe attribute)

 	connection (neat.pipe.rethinkdb.RethinkDBPipe attribute)

D

 	
 	data (neat.models.record.Record attribute)

 	db (neat.pipe.mongodb.MongoDBPipe attribute)

 	
 	delay (neat.scheduler.simple.SimpleDelayScheduler attribute)

 	device_name (neat.models.record.Record attribute)

 	DeviceType (class in neat.device)

E

 	
 	ENERGY (neat.device.DeviceType attribute)

 	
 	EnergyDevice (class in neat.device)

 	Engine (class in neat.engine)

F

 	
 	fields (neat.device.AbstractDevice attribute)

 	(neat.device.EnergyDevice attribute)

 	(neat.device.HVACDevice attribute)

 	(neat.device.PVDevice attribute)

 	(neat.device.SolarThermalDevice attribute)

 	(neat.device.TemperatureDevice attribute)

 	(neat.device.UnknownDevice attribute)

 	(neat.device.WindDevice attribute)

 	
 	from_config() (neat.client.AbstractClient static method)

 	(neat.client.BasicClient static method)

G

 	
 	get_translator() (in module neat.translator)

H

 	
 	HVAC (neat.device.DeviceType attribute)

 	
 	HVACDevice (class in neat.device)

L

 	
 	lat (neat.models.record.Record attribute)

 	
 	lon (neat.models.record.Record attribute)

M

 	
 	ModuleConstantException

 	
 	MongoDBPipe (class in neat.pipe.mongodb)

N

 	
 	name (neat.device.AbstractDevice attribute)

 	(neat.device.EnergyDevice attribute)

 	(neat.device.HVACDevice attribute)

 	(neat.device.PVDevice attribute)

 	(neat.device.SolarThermalDevice attribute)

 	(neat.device.TemperatureDevice attribute)

 	(neat.device.UnknownDevice attribute)

 	(neat.device.WindDevice attribute)

 	(neat.models.record.Record attribute)

 	(neat.models.record.RecordPoint attribute)

 	neat (module)

 	neat.client (module)

 	neat.const (module)

 	
 	neat.device (module)

 	neat.engine (module)

 	neat.models (module)

 	neat.models.record (module)

 	neat.pipe (module)

 	neat.pipe.mongodb (module)

 	neat.pipe.rethinkdb (module)

 	neat.requester (module)

 	neat.requester.obvius (module)

 	neat.scheduler (module)

 	neat.scheduler.simple (module)

 	neat.translator (module)

 	neat.translator.obvius (module)

 	number (neat.models.record.RecordPoint attribute)

O

 	
 	ObviusRequester (class in neat.requester.obvius)

 	ObviusTranslator (class in neat.translator.obvius)

 	on_commit() (neat.engine.Engine method)

 	on_data() (neat.engine.Engine method)

 	
 	on_record() (neat.engine.Engine method)

 	on_scheduled() (neat.engine.Engine method)

 	on_start (neat.engine.Engine attribute)

 	on_stop (neat.engine.Engine attribute)

P

 	
 	parse() (neat.device.AbstractDevice method)

 	parsed (neat.models.record.Record attribute)

 	parser (neat.translator.obvius.ObviusTranslator attribute)

 	
 	pipes (neat.engine.Engine attribute)

 	PV (neat.device.DeviceType attribute)

 	PVDevice (class in neat.device)

R

 	
 	receive() (neat.requester.obvius.ObviusRequester method)

 	Record (class in neat.models.record)

 	RecordPoint (class in neat.models.record)

 	
 	register (neat.engine.Engine attribute)

 	request() (neat.requester.obvius.ObviusRequester method)

 	RethinkDBPipe (class in neat.pipe.rethinkdb)

 	run() (neat.scheduler.simple.SimpleDelayScheduler method)

S

 	
 	SimpleDelayScheduler (class in neat.scheduler.simple)

 	SOLAR_THERM (neat.device.DeviceType attribute)

 	SolarThermalDevice (class in neat.device)

 	start() (neat.client.AbstractClient method)

 	(neat.client.BasicClient method)

 	(neat.engine.Engine method)

 	
 	stop() (neat.engine.Engine method)

 	supported_requesters (neat.translator.obvius.ObviusTranslator attribute)

T

 	
 	table (neat.pipe.mongodb.MongoDBPipe attribute)

 	TEMP (neat.device.DeviceType attribute)

 	TemperatureDevice (class in neat.device)

 	timestamp (neat.models.record.Record attribute)

 	to_dict() (neat.models.record.Record method)

 	(neat.models.record.RecordPoint method)

 	
 	translate() (neat.translator.obvius.ObviusTranslator method)

 	translators (neat.engine.Engine attribute)

 	ttl (neat.models.record.Record attribute)

 	type (neat.models.record.Record attribute)

U

 	
 	unit (neat.models.record.RecordPoint attribute)

 	unit_map (neat.translator.obvius.ObviusTranslator attribute)

 	
 	UNKNOWN (neat.device.DeviceType attribute)

 	UnknownDevice (class in neat.device)

 	ureg (neat.device.AbstractDevice attribute)

V

 	
 	validate() (neat.models.record.Record method)

 	(neat.pipe.mongodb.MongoDBPipe method)

 	(neat.pipe.rethinkdb.RethinkDBPipe method)

 	(neat.translator.obvius.ObviusTranslator method)

 	
 	value (neat.models.record.RecordPoint attribute)

W

 	
 	WIND (neat.device.DeviceType attribute)

 	
 	WindDevice (class in neat.device)

 Source code for abc

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""

def abstractmethod(funcobj):
 """A decorator indicating abstract methods.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract methods are overridden.
 The abstract methods can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractmethod
 def my_abstract_method(self, ...):
 ...
 """
 funcobj.__isabstractmethod__ = True
 return funcobj

class abstractclassmethod(classmethod):
 """A decorator indicating abstract classmethods.

 Similar to abstractmethod.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractclassmethod
 def my_abstract_classmethod(cls, ...):
 ...

 'abstractclassmethod' is deprecated. Use 'classmethod' with
 'abstractmethod' instead.
 """

 __isabstractmethod__ = True

 def __init__(self, callable):
 callable.__isabstractmethod__ = True
 super().__init__(callable)

class abstractstaticmethod(staticmethod):
 """A decorator indicating abstract staticmethods.

 Similar to abstractmethod.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractstaticmethod
 def my_abstract_staticmethod(...):
 ...

 'abstractstaticmethod' is deprecated. Use 'staticmethod' with
 'abstractmethod' instead.
 """

 __isabstractmethod__ = True

 def __init__(self, callable):
 callable.__isabstractmethod__ = True
 super().__init__(callable)

class abstractproperty(property):
 """A decorator indicating abstract properties.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract properties are overridden.
 The abstract properties can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C(metaclass=ABCMeta):
 @abstractproperty
 def my_abstract_property(self):
 ...

 This defines a read-only property; you can also define a read-write
 abstract property using the 'long' form of property declaration:

 class C(metaclass=ABCMeta):
 def getx(self): ...
 def setx(self, value): ...
 x = abstractproperty(getx, setx)

 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod'
 instead.
 """

 __isabstractmethod__ = True

try:
 from _abc import (get_cache_token, _abc_init, _abc_register,
 _abc_instancecheck, _abc_subclasscheck, _get_dump,
 _reset_registry, _reset_caches)
except ImportError:
 from _py_abc import ABCMeta, get_cache_token
 ABCMeta.__module__ = 'abc'
else:
 class ABCMeta(type):
 """Metaclass for defining Abstract Base Classes (ABCs).

 Use this metaclass to create an ABC. An ABC can be subclassed
 directly, and then acts as a mix-in class. You can also register
 unrelated concrete classes (even built-in classes) and unrelated
 ABCs as 'virtual subclasses' -- these and their descendants will
 be considered subclasses of the registering ABC by the built-in
 issubclass() function, but the registering ABC won't show up in
 their MRO (Method Resolution Order) nor will method
 implementations defined by the registering ABC be callable (not
 even via super()).
 """
 def __new__(mcls, name, bases, namespace, **kwargs):
 cls = super().__new__(mcls, name, bases, namespace, **kwargs)
 _abc_init(cls)
 return cls

 def register(cls, subclass):
 """Register a virtual subclass of an ABC.

 Returns the subclass, to allow usage as a class decorator.
 """
 return _abc_register(cls, subclass)

 def __instancecheck__(cls, instance):
 """Override for isinstance(instance, cls)."""
 return _abc_instancecheck(cls, instance)

 def __subclasscheck__(cls, subclass):
 """Override for issubclass(subclass, cls)."""
 return _abc_subclasscheck(cls, subclass)

 def _dump_registry(cls, file=None):
 """Debug helper to print the ABC registry."""
 print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
 print(f"Inv. counter: {get_cache_token()}", file=file)
 (_abc_registry, _abc_cache, _abc_negative_cache,
 _abc_negative_cache_version) = _get_dump(cls)
 print(f"_abc_registry: {_abc_registry!r}", file=file)
 print(f"_abc_cache: {_abc_cache!r}", file=file)
 print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
 print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
 file=file)

 def _abc_registry_clear(cls):
 """Clear the registry (for debugging or testing)."""
 _reset_registry(cls)

 def _abc_caches_clear(cls):
 """Clear the caches (for debugging or testing)."""
 _reset_caches(cls)

class ABC(metaclass=ABCMeta):
 """Helper class that provides a standard way to create an ABC using
 inheritance.
 """
 __slots__ = ()

 All modules for which code is available

	abc

	blinker.base

	neat.client

	neat.const

	neat.device

	neat.engine

	neat.models.record

	neat.pipe.mongodb

	neat.pipe.rethinkdb

	neat.requester.obvius

	neat.scheduler.simple

	neat.translator

	neat.translator.obvius

 Source code for blinker.base

-*- coding: utf-8; fill-column: 76 -*-
"""Signals and events.

A small implementation of signals, inspired by a snippet of Django signal
API client code seen in a blog post. Signals are first-class objects and
each manages its own receivers and message emission.

The :func:`signal` function provides singleton behavior for named signals.

"""
from warnings import warn
from weakref import WeakValueDictionary

from blinker._utilities import (
 WeakTypes,
 contextmanager,
 defaultdict,
 hashable_identity,
 lazy_property,
 reference,
 symbol,
)

ANY = symbol('ANY')
ANY.__doc__ = 'Token for "any sender".'
ANY_ID = 0

class Signal(object):
 """A notification emitter."""

 #: An :obj:`ANY` convenience synonym, allows ``Signal.ANY``
 #: without an additional import.
 ANY = ANY

 @lazy_property
 def receiver_connected(self):
 """Emitted after each :meth:`connect`.

 The signal sender is the signal instance, and the :meth:`connect`
 arguments are passed through: *receiver*, *sender*, and *weak*.

 .. versionadded:: 1.2

 """
 return Signal(doc="Emitted after a receiver connects.")

 @lazy_property
 def receiver_disconnected(self):
 """Emitted after :meth:`disconnect`.

 The sender is the signal instance, and the :meth:`disconnect` arguments
 are passed through: *receiver* and *sender*.

 Note, this signal is emitted **only** when :meth:`disconnect` is
 called explicitly.

 The disconnect signal can not be emitted by an automatic disconnect
 (due to a weakly referenced receiver or sender going out of scope),
 as the receiver and/or sender instances are no longer available for
 use at the time this signal would be emitted.

 An alternative approach is available by subscribing to
 :attr:`receiver_connected` and setting up a custom weakref cleanup
 callback on weak receivers and senders.

 .. versionadded:: 1.2

 """
 return Signal(doc="Emitted after a receiver disconnects.")

 def __init__(self, doc=None):
 """
 :param doc: optional. If provided, will be assigned to the signal's
 __doc__ attribute.

 """
 if doc:
 self.__doc__ = doc
 #: A mapping of connected receivers.
 #:
 #: The values of this mapping are not meaningful outside of the
 #: internal :class:`Signal` implementation, however the boolean value
 #: of the mapping is useful as an extremely efficient check to see if
 #: any receivers are connected to the signal.
 self.receivers = {}
 self._by_receiver = defaultdict(set)
 self._by_sender = defaultdict(set)
 self._weak_senders = {}

 def connect(self, receiver, sender=ANY, weak=True):
 """Connect *receiver* to signal events sent by *sender*.

 :param receiver: A callable. Will be invoked by :meth:`send` with
 `sender=` as a single positional argument and any **kwargs that
 were provided to a call to :meth:`send`.

 :param sender: Any object or :obj:`ANY`, defaults to ``ANY``.
 Restricts notifications delivered to *receiver* to only those
 :meth:`send` emissions sent by *sender*. If ``ANY``, the receiver
 will always be notified. A *receiver* may be connected to
 multiple *sender* values on the same Signal through multiple calls
 to :meth:`connect`.

 :param weak: If true, the Signal will hold a weakref to *receiver*
 and automatically disconnect when *receiver* goes out of scope or
 is garbage collected. Defaults to True.

 """
 receiver_id = hashable_identity(receiver)
 if weak:
 receiver_ref = reference(receiver, self._cleanup_receiver)
 receiver_ref.receiver_id = receiver_id
 else:
 receiver_ref = receiver
 if sender is ANY:
 sender_id = ANY_ID
 else:
 sender_id = hashable_identity(sender)

 self.receivers.setdefault(receiver_id, receiver_ref)
 self._by_sender[sender_id].add(receiver_id)
 self._by_receiver[receiver_id].add(sender_id)
 del receiver_ref

 if sender is not ANY and sender_id not in self._weak_senders:
 # wire together a cleanup for weakref-able senders
 try:
 sender_ref = reference(sender, self._cleanup_sender)
 sender_ref.sender_id = sender_id
 except TypeError:
 pass
 else:
 self._weak_senders.setdefault(sender_id, sender_ref)
 del sender_ref

 # broadcast this connection. if receivers raise, disconnect.
 if ('receiver_connected' in self.__dict__ and
 self.receiver_connected.receivers):
 try:
 self.receiver_connected.send(self,
 receiver=receiver,
 sender=sender,
 weak=weak)
 except:
 self.disconnect(receiver, sender)
 raise
 if receiver_connected.receivers and self is not receiver_connected:
 try:
 receiver_connected.send(self,
 receiver_arg=receiver,
 sender_arg=sender,
 weak_arg=weak)
 except:
 self.disconnect(receiver, sender)
 raise
 return receiver

 def connect_via(self, sender, weak=False):
 """Connect the decorated function as a receiver for *sender*.

 :param sender: Any object or :obj:`ANY`. The decorated function
 will only receive :meth:`send` emissions sent by *sender*. If
 ``ANY``, the receiver will always be notified. A function may be
 decorated multiple times with differing *sender* values.

 :param weak: If true, the Signal will hold a weakref to the
 decorated function and automatically disconnect when *receiver*
 goes out of scope or is garbage collected. Unlike
 :meth:`connect`, this defaults to False.

 The decorated function will be invoked by :meth:`send` with
 `sender=` as a single positional argument and any **kwargs that
 were provided to the call to :meth:`send`.

 .. versionadded:: 1.1

 """
 def decorator(fn):
 self.connect(fn, sender, weak)
 return fn
 return decorator

 @contextmanager
 def connected_to(self, receiver, sender=ANY):
 """Execute a block with the signal temporarily connected to *receiver*.

 :param receiver: a receiver callable
 :param sender: optional, a sender to filter on

 This is a context manager for use in the ``with`` statement. It can
 be useful in unit tests. *receiver* is connected to the signal for
 the duration of the ``with`` block, and will be disconnected
 automatically when exiting the block:

 .. testsetup::

 from __future__ import with_statement
 from blinker import Signal
 on_ready = Signal()
 receiver = lambda sender: None

 .. testcode::

 with on_ready.connected_to(receiver):
 # do stuff
 on_ready.send(123)

 .. versionadded:: 1.1

 """
 self.connect(receiver, sender=sender, weak=False)
 try:
 yield None
 except:
 self.disconnect(receiver)
 raise
 else:
 self.disconnect(receiver)

 def temporarily_connected_to(self, receiver, sender=ANY):
 """An alias for :meth:`connected_to`.

 :param receiver: a receiver callable
 :param sender: optional, a sender to filter on

 .. versionadded:: 0.9

 .. versionchanged:: 1.1
 Renamed to :meth:`connected_to`. ``temporarily_connected_to`` was
 deprecated in 1.2 and will be removed in a subsequent version.

 """
 warn("temporarily_connected_to is deprecated; "
 "use connected_to instead.",
 DeprecationWarning)
 return self.connected_to(receiver, sender)

 def send(self, *sender, **kwargs):
 """Emit this signal on behalf of *sender*, passing on **kwargs.

 Returns a list of 2-tuples, pairing receivers with their return
 value. The ordering of receiver notification is undefined.

 :param *sender: Any object or ``None``. If omitted, synonymous
 with ``None``. Only accepts one positional argument.

 :param **kwargs: Data to be sent to receivers.

 """
 # Using '*sender' rather than 'sender=None' allows 'sender' to be
 # used as a keyword argument- i.e. it's an invisible name in the
 # function signature.
 if len(sender) == 0:
 sender = None
 elif len(sender) > 1:
 raise TypeError('send() accepts only one positional argument, '
 '%s given' % len(sender))
 else:
 sender = sender[0]
 if not self.receivers:
 return []
 else:
 return [(receiver, receiver(sender, **kwargs))
 for receiver in self.receivers_for(sender)]

 def has_receivers_for(self, sender):
 """True if there is probably a receiver for *sender*.

 Performs an optimistic check only. Does not guarantee that all
 weakly referenced receivers are still alive. See
 :meth:`receivers_for` for a stronger search.

 """
 if not self.receivers:
 return False
 if self._by_sender[ANY_ID]:
 return True
 if sender is ANY:
 return False
 return hashable_identity(sender) in self._by_sender

 def receivers_for(self, sender):
 """Iterate all live receivers listening for *sender*."""
 # TODO: test receivers_for(ANY)
 if self.receivers:
 sender_id = hashable_identity(sender)
 if sender_id in self._by_sender:
 ids = (self._by_sender[ANY_ID] |
 self._by_sender[sender_id])
 else:
 ids = self._by_sender[ANY_ID].copy()
 for receiver_id in ids:
 receiver = self.receivers.get(receiver_id)
 if receiver is None:
 continue
 if isinstance(receiver, WeakTypes):
 strong = receiver()
 if strong is None:
 self._disconnect(receiver_id, ANY_ID)
 continue
 receiver = strong
 yield receiver

 def disconnect(self, receiver, sender=ANY):
 """Disconnect *receiver* from this signal's events.

 :param receiver: a previously :meth:`connected<connect>` callable

 :param sender: a specific sender to disconnect from, or :obj:`ANY`
 to disconnect from all senders. Defaults to ``ANY``.

 """
 if sender is ANY:
 sender_id = ANY_ID
 else:
 sender_id = hashable_identity(sender)
 receiver_id = hashable_identity(receiver)
 self._disconnect(receiver_id, sender_id)

 if ('receiver_disconnected' in self.__dict__ and
 self.receiver_disconnected.receivers):
 self.receiver_disconnected.send(self,
 receiver=receiver,
 sender=sender)

 def _disconnect(self, receiver_id, sender_id):
 if sender_id == ANY_ID:
 if self._by_receiver.pop(receiver_id, False):
 for bucket in self._by_sender.values():
 bucket.discard(receiver_id)
 self.receivers.pop(receiver_id, None)
 else:
 self._by_sender[sender_id].discard(receiver_id)
 self._by_receiver[receiver_id].discard(sender_id)

 def _cleanup_receiver(self, receiver_ref):
 """Disconnect a receiver from all senders."""
 self._disconnect(receiver_ref.receiver_id, ANY_ID)

 def _cleanup_sender(self, sender_ref):
 """Disconnect all receivers from a sender."""
 sender_id = sender_ref.sender_id
 assert sender_id != ANY_ID
 self._weak_senders.pop(sender_id, None)
 for receiver_id in self._by_sender.pop(sender_id, ()):
 self._by_receiver[receiver_id].discard(sender_id)

 def _cleanup_bookkeeping(self):
 """Prune unused sender/receiver bookeeping. Not threadsafe.

 Connecting & disconnecting leave behind a small amount of bookeeping
 for the receiver and sender values. Typical workloads using Blinker,
 for example in most web apps, Flask, CLI scripts, etc., are not
 adversely affected by this bookkeeping.

 With a long-running Python process performing dynamic signal routing
 with high volume- e.g. connecting to function closures, "senders" are
 all unique object instances, and doing all of this over and over- you
 may see memory usage will grow due to extraneous bookeeping. (An empty
 set() for each stale sender/receiver pair.)

 This method will prune that bookeeping away, with the caveat that such
 pruning is not threadsafe. The risk is that cleanup of a fully
 disconnected receiver/sender pair occurs while another thread is
 connecting that same pair. If you are in the highly dynamic, unique
 receiver/sender situation that has lead you to this method, that
 failure mode is perhaps not a big deal for you.
 """
 for mapping in (self._by_sender, self._by_receiver):
 for _id, bucket in list(mapping.items()):
 if not bucket:
 mapping.pop(_id, None)

 def _clear_state(self):
 """Throw away all signal state. Useful for unit tests."""
 self._weak_senders.clear()
 self.receivers.clear()
 self._by_sender.clear()
 self._by_receiver.clear()

receiver_connected = Signal("""\
Sent by a :class:`Signal` after a receiver connects.

:argument: the Signal that was connected to
:keyword receiver_arg: the connected receiver
:keyword sender_arg: the sender to connect to
:keyword weak_arg: true if the connection to receiver_arg is a weak reference

.. deprecated:: 1.2

As of 1.2, individual signals have their own private
:attr:`~Signal.receiver_connected` and
:attr:`~Signal.receiver_disconnected` signals with a slightly simplified
call signature. This global signal is planned to be removed in 1.6.

""")

class NamedSignal(Signal):
 """A named generic notification emitter."""

 def __init__(self, name, doc=None):
 Signal.__init__(self, doc)

 #: The name of this signal.
 self.name = name

 def __repr__(self):
 base = Signal.__repr__(self)
 return "%s; %r>" % (base[:-1], self.name)

class Namespace(dict):
 """A mapping of signal names to signals."""

 def signal(self, name, doc=None):
 """Return the :class:`NamedSignal` *name*, creating it if required.

 Repeated calls to this function will return the same signal object.

 """
 try:
 return self[name]
 except KeyError:
 return self.setdefault(name, NamedSignal(name, doc))

class WeakNamespace(WeakValueDictionary):
 """A weak mapping of signal names to signals.

 Automatically cleans up unused Signals when the last reference goes out
 of scope. This namespace implementation exists for a measure of legacy
 compatibility with Blinker <= 1.2, and may be dropped in the future.

 .. versionadded:: 1.3

 """

 def signal(self, name, doc=None):
 """Return the :class:`NamedSignal` *name*, creating it if required.

 Repeated calls to this function will return the same signal object.

 """
 try:
 return self[name]
 except KeyError:
 return self.setdefault(name, NamedSignal(name, doc))

signal = Namespace().signal

 Source code for neat.client

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import os
import abc

from . import const
from .engine import Engine
from . import (
 scheduler,
 requester,
 pipe
)

import yaml

[docs]class AbstractClient(object, metaclass=abc.ABCMeta):
 """ The basic class for all valid clients.
 """

[docs] @staticmethod
 @abc.abstractmethod
 def from_config(config_path: str):
 """ Creates a client from a config file.

 :param config: The path of the config file to load from
 :type config: str
 :returns: An instance of the created client
 :rtype: AbstractClient
 """

 raise NotImplementedError()

[docs] @abc.abstractmethod
 def start(self) -> None:
 """ Starts the engine.

 :returns: Does not return
 :rtype: None
 """

 raise NotImplementedError()

[docs]class BasicClient(AbstractClient):
 """ A very basic client for engine initalization.
 """

 def __init__(self, config: dict):
 """ Initializes the client.

 :param config: A dictionary read in directly from a config file.
 :type config: dict
 """

 device_pairs = []
 pipers = []
 for (device_index, device) in enumerate(config['devices']):
 device_setup = []
 try:
 device_scheduler_config = {
 k: v
 for (k, v) in device['scheduler'].items()
 if k != '$'
 }
 device_setup.append(getattr(
 scheduler, device['scheduler']['$']
)(**device_scheduler_config))
 except Exception as exc:
 const.log.error((
 'could not initialize scheduler '
 'for device at index `{device_index}` with config '
 '{device_scheduler_config} ...'
).format(
 device_index=device_index,
 device_scheduler_config=device_scheduler_config
))
 try:
 device_requester_config = {
 k: v
 for (k, v) in device['requester'].items()
 if k != '$'
 }
 device_setup.append(getattr(
 requester, device['requester']['$']
)(**device_requester_config))
 except Exception as exc:
 const.log.error((
 'could not initialize requester for device at index '
 '`{device_index}` with config '
 '{device_requester_config} ...'
).format(
 device_index=device_index,
 device_requester_config=device_requester_config
))
 if len(device_setup) == 2:
 device_pairs.append(tuple(device_setup))
 for piper in config['pipes']:
 try:
 piper_config = {
 k: v for (k, v) in piper.items() if k != '$'
 }
 piper = getattr(pipe, piper['$'])(**piper_config)
 pipers.append(piper)
 except Exception as exc:
 const.log.error((
 'could not initialize pipe `{piper[$]}` with config '
 '{piper_config} ...'
).format(piper=piper, piper_config=piper_config))
 self.engine = Engine(dict(device_pairs), pipers)

[docs] @staticmethod
 def from_config(config: str):
 """ Creates a BasicClient from a config file.

 :param config: The path of the config file to load from
 :type config: str
 :returns: An instance of the created BasicClient
 :rtype: BasicClient
 """

 config = os.path.abspath(os.path.expanduser(config))
 if os.path.isfile(config):
 with open(config, 'r') as fp:
 try:
 return BasicClient(yaml.load(fp))
 except yaml.YAMLError as exc:
 const.log.error((
 'client failed loading from config at `{config}`, '
 '{exc.message} ...'
).format(config=config, exc=exc))
 else:
 raise FileNotFoundError((
 "given file at '{config}' does not exist"
).format(config=config))

[docs] def start(self) -> None:
 """ Starts the engine.

 :returns: Does not return
 :rtype: None
 """

 try:
 self.engine.start()
 for _ in self.engine.register.keys():
 _.join()
 except KeyboardInterrupt:
 const.log.info(('terminating client `{self}`').format(self=self))
 self.engine.stop()

 Source code for neat.device

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import abc
import enum
from typing import Dict

from . import const
from .models.record import Record, RecordPoint

import pint

[docs]class AbstractDevice(object, metaclass=abc.ABCMeta):
 """ The base class for all valid devices.
 """

 @abc.abstractproperty
 def name(self) -> str:
 """ The name of the device.
 """

 raise NotImplementedError()

 @abc.abstractproperty
 def fields(self) -> Dict[str, str]:
 """ The expected device fields.
 """

 raise NotImplementedError()

 @property
 def ureg(self) -> pint.UnitRegistry:
 """ The unit registry for all devices.
 """

 if not hasattr(self, '_ureg'):
 self._ureg = pint.UnitRegistry(autoconvert_offset_to_baseunit=True)
 return self._ureg

[docs] def parse(self, record: Record) -> Dict[str, RecordPoint]:
 """ Parses a given record for the necessary device fields.

 :param record: The record to parse
 :type record: Record
 :returns: A dictionary of field names mapped to record points
 :rtype: dict
 """

 record_parsed = {}
 if isinstance(record.parsed, dict) and \
 not isinstance(self, UnknownDevice):
 for (parsed_name, parsed_config) in record.parsed.items():
 record_point = record.data[parsed_config['point']]
 try:
 parsed_point = (self.ureg.Quantity(
 record_point.value, self.ureg.Unit(record_point.unit)
)).to(self.ureg.Unit(self.fields[parsed_name]))
 record_parsed[parsed_name] = RecordPoint(
 value=parsed_point.magnitude,
 unit=str(parsed_point.units)
)
 except KeyError as exc:
 const.log.warning((
 '`{record}` got unkown specification for a field '
 '`{parsed_name}`, ignoring ...'
).format(record=record, parsed_name=parsed_name))
 for (req_name, req_unit) in self.fields.items():
 try:
 record_parsed[req_name]
 except KeyError as exc:
 const.log.warning((
 '`{record}` missing required specification for parsed '
 'field `{req_name}`, setting to empty record point ...'
).format(record=record, req_name=req_name))
 record_parsed[req_name] = RecordPoint(
 value=None, unit='dimensionless'
)
 return record_parsed

[docs]class UnknownDevice(AbstractDevice):
 """ Defines an unknown device type.

 .. note:: Primarily used for Obvius virtual meters
 """

 name = 'Unknown Device'
 fields = {}

[docs]class PVDevice(AbstractDevice):
 """ Defines a photovoltaic device.
 """

 name = 'PV Device'
 # TODO: determine default types for device
 fields = {}

[docs]class HVACDevice(AbstractDevice):
 """ Defines a heating, ventilation, and cooling device.
 """

 name = 'HVAC Device'
 # TODO: determine default types for device
 fields = {}

[docs]class SolarThermalDevice(AbstractDevice):
 """ Defines a solar thermal device.
 """

 name = 'Solar Thermal Device'
 fields = {
 'energy_rate': 'btu / hour',
 'flow_rate': 'gallon / minute',
 'supply_temp': 'degF',
 'return_temp': 'degF',
 'energy_total': 'megabtu'
 }

[docs]class WindDevice(AbstractDevice):
 """ Defines a wind based device.
 """

 name = 'Wind Device'
 fields = {
 'inverter_real': 'kilowatt',
 'inverter_energy_total': 'kilowatthour',
 'rotor_speed': 'rpm',
 'wind_speed': 'mph'
 }

[docs]class EnergyDevice(AbstractDevice):
 """ Defines a generic energy device.
 """

 name = 'Energy Device'
 # TODO: determine default types for device
 fields = {}

[docs]class TemperatureDevice(AbstractDevice):
 """ Defines a generic temperature device.
 """

 name = 'Temperature Device'
 # TODO: determine default types for device
 fields = {}

[docs]class DeviceType(enum.Enum):
 """ An enumeration of available device types.

 .. note:: Maps types to instances not classes
 """

 UNKNOWN = (0x0, UnknownDevice())
 PV = (0x1, PVDevice())
 HVAC = (0x2, HVACDevice())
 SOLAR_THERM = (0x3, SolarThermalDevice())
 WIND = (0x4, WindDevice())
 ENERGY = (0x5, EnergyDevice())
 TEMP = (0x6, TemperatureDevice())

 Source code for neat.engine

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

from typing import Dict, List

from . import const
from .models.record import Record
from .scheduler._common import AbstractScheduler
from .requester._common import AbstractRequester
from .translator._common import AbstractTranslator
from .pipe._common import AbstractPipe
from .translator import get_translator

import blinker

[docs]class Engine(object):
 """ Provides communication between all of the subpackages.
 """

 on_start = blinker.Signal()
 on_stop = blinker.Signal()

 def __init__(
 self,
 register: Dict[AbstractScheduler, AbstractRequester]={},
 pipes: List[AbstractPipe]=[],
):
 """ Initializes an instance of the engine.

 :param register: A dictionary of schedulers mapped to requesters
 :type register: dict
 :param pipes: A list of pipes that should be used for records
 :type pipes: list
 """

 self._register = register
 self._pipes = pipes
 self._translators = {}

 @property
 def register(self) -> Dict[AbstractScheduler, AbstractRequester]:
 """ The mapping of schedulers to requesters.
 """

 return self._register

 @property
 def translators(self) -> List[AbstractTranslator]:
 """ The list of translator objects that have been needed.
 """

 return self._translators

 @property
 def pipes(self) -> List[AbstractPipe]:
 """ The list of pipe objects that are handling created records.
 """

 return self._pipes

[docs] def on_scheduled(self, scheduler: AbstractScheduler) -> None:
 """ Event handler for when schedulers trigger their mapped requesters.

 :param scheduler: The scheduler that needs to run its requester
 :type scheduler: AbstractScheduler
 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'scheduled request from scheduler `{scheduler}` ...'
).format(scheduler=scheduler))
 self.register[scheduler].request()

[docs] def on_data(
 self,
 requester: AbstractRequester, data: str, meta: dict
) -> None:
 """ Event handler for when requesters get a response from their device.

 :param requester: The requester who retrieved the data
 :type requester: AbstractRequester
 :param data: The data returned from the device
 :type data: str
 :param meta: Any additional fields required to properly interpret data
 :type meta: dict
 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'recieved data from requester `{requester}` ...'
).format(requester=requester, data=data))
 requester_name = requester.__class__.__name__
 if requester_name not in self.translators:
 translator = get_translator(requester_name)()
 translator.signal.connect(self.on_record)
 self.translators[requester_name] = get_translator(requester_name)()
 self.translators[requester_name].translate(data, meta=meta)

[docs] def on_record(self, record: Record) -> None:
 """ Event handler for when translators finish translation of some data.

 :param record: The translated record
 :type record: Record
 :returns: Does not return
 :rtype: None
 """

 if not record.validate():
 const.log.error((
 'invalid record recieved `{record}` ...'
).format(record=record))
 else:
 const.log.debug((
 'adding record `{record}` to pipes ...'
).format(record=record))
 for piper in self.pipes:
 piper.accept(record)

[docs] def on_commit(self, piper: AbstractPipe, record: Record) -> None:
 """ Event handler for when pipes finish writing out a record.

 :param piper: The pipe who wrote the record out
 :type piper: AbstractPipe
 :param record: The record that was written
 :type record: Record
 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'pipe `{piper}` successfully handled record `{record}` ...'
).format(piper=piper, record=record))

[docs] def start(self) -> None:
 """ Starts the engine.

 :returns: Does not return
 :rtype: None
 """

 self.on_start.send(self)

 for piper in self.pipes:
 if not piper.validate():
 const.log.warning((
 'pipe `{piper}` did not pass validation, '
 'removing from pipes ...'
).format(piper=piper))
 self.pipes.remove(piper)
 else:
 const.log.debug((
 'utilizing pipe `{piper}` ...'
).format(piper=piper))
 piper.signal.connect(self.on_commit)

 for (scheduler, requester) in self.register.items():
 scheduler.signal.connect(self.on_scheduled)
 requester.signal.connect(self.on_data)
 scheduler.start()
 const.log.info((
 'starting scheduler `{scheduler}` signal as daemon '
 'with pid `{scheduler.pid}` for `{requester}` ...'
).format(scheduler=scheduler, requester=requester))

[docs] def stop(self) -> None:
 """ Stops the engine.

 :returns: Does not return
 :rtype: None
 """

 const.log.info((
 'stopping engine and scheduler threads with pids '
 '{scheduler_pids} ...'
).format(scheduler_pids=[_.pid for _ in self.register.keys()]))

 for (scheduler, requester) in self.register.items():
 const.log.debug((
 'ensuring scheduler `{scheduler}` with pid '
 '`{scheduler.pid}` is terminated ...'
).format(scheduler=scheduler))
 scheduler.terminate()
 self.on_stop.send(self)

 Source code for neat.translator

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import sys
import inspect

from ._common import *
from .obvius import ObviusTranslator

[docs]def get_translator(requester_name: str) -> AbstractTranslator:
 """ Tries to retrieve a supported translator given a requesters name.

 :param requester_name: The requester's class name
 :type requester_name: str
 :returns: A supported translator
 :rtype: AbstractTranslator
 """

 for (translator_name, translator) in inspect.getmembers(
 sys.modules[__name__], inspect.isclass
):
 if requester_name in translator.supported_requesters:
 return translator

 Source code for neat.models.record

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

from typing import List, Dict

from .. import const
from ._common import AbstractModel

import pint
import jsonschema

[docs]class RecordPoint(object):
 """ A record point representation.

 .. note:: Not a subclass of :class:`neat.models._common.AbstractModel`
 """

 def __init__(self, **kwargs):
 """ Initializes the record point with any preliminary fields.

 :param kwargs: A dictionary of any preliminary fields
 :type kwargs: dict
 """

 self._meta = {}
 for (k, v) in kwargs.items():
 if hasattr(self, k):
 setattr(self, k, v)
 else:
 self._meta[k] = v

 @property
 def number(self) -> int:
 """ The number of the record point.
 """

 if hasattr(self, '_number'):
 return self._number

 @number.setter
 def number(self, number: int) -> None:
 """ Sets the number of the record point.

 :param number: The new number of the record point
 :type number: int
 """

 self._number = number

 @property
 def name(self) -> str:
 """ The name of the record point.
 """

 if hasattr(self, '_name'):
 return self._name

 @name.setter
 def name(self, name: str) -> None:
 """ Sets the name of the record point.

 :param name: The new name of the record point
 :type name: str
 """

 self._name = name

 @property
 def unit(self) -> str:
 """ The pint unit expression of the record point.
 """

 if hasattr(self, '_unit'):
 return self._unit

 @unit.setter
 def unit(self, unit: str) -> None:
 """ Sets the unit of the record point.

 :param unit: The new pint unit expression of the record point
 :type unit: str
 """

 self._unit = unit

 @property
 def value(self) -> float:
 """ The value of the record point.
 """

 if hasattr(self, '_value'):
 return self._value

 @value.setter
 def value(self, value: float) -> None:
 """ Sets the value of the record point.

 :param value: The new value of the record point
 :type value: float
 """

 self._value = value

[docs] def to_dict(self) -> dict:
 """ Builds a serializable representation of the record point.

 :returns: A serializable representation of the record point
 :rtype: dict
 """

 data = {
 'value': self.value,
 'unit': self.unit
 }
 if hasattr(self, '_name'):
 data['name'] = self.name
 if hasattr(self, '_number'):
 data['number'] = self.number
 return data

[docs]class Record(AbstractModel):
 """ A model representation of a record.
 """

 def __init__(self, **kwargs):
 """ Initializes the record with any preliminary fields.

 :param kwargs: A dictionary of any preliminary fields
 :type kwargs: dict
 """

 (self._data, self._parsed, self._meta,) = ({}, {}, {},)
 for (k, v) in kwargs.items():
 if hasattr(self, k):
 setattr(self, k, v)
 else:
 self._meta[k] = v

 def __repr__(self):
 """ A string representation of the record.

 :returns: A string representation of the record
 :rtype: str
 """

 return (
 '<{self.__class__.__name__} ({self.timestamp}) "{self.name}">'
).format(self=self)

 @property
 def device_name(self) -> str:
 """ The human readable name of the device.
 """

 if hasattr(self, '_device_name'):
 return self._device_name

 @device_name.setter
 def device_name(self, device_name: str) -> None:
 """ Sets the human readable name of the device.

 :param device_name: The new human readable device name
 :type device_name: str
 """

 self._device_name = device_name

 @property
 def name(self) -> str:
 """ The primary name of the device.
 """

 if hasattr(self, '_name'):
 return self._name

 @name.setter
 def name(self, name: str) -> None:
 """ Sets the primary name of the device.

 :param name: The new primary name of the device
 :type name: str
 """

 self._name = name

 @property
 def lon(self) -> float:
 """ The longitude of the device.
 """

 if hasattr(self, '_lon'):
 return self._lon

 @lon.setter
 def lon(self, lon: float) -> None:
 """ Sets the longitude of the record's device.

 :param lon: The new longitude of the record's device
 :type long: float
 """

 self._lon = float(lon)

 @property
 def lat(self) -> float:
 """ The latitude of the device.
 """

 if hasattr(self, '_lat'):
 return self._lat

 @lat.setter
 def lat(self, lat: float) -> None:
 """ Sets the latitude of the record's device.

 :param lon: The new latitude of the record's device
 :type long: float
 """

 self._lat = float(lat)

 @property
 def timestamp(self) -> int:
 """ The record's creation unix timestamp.
 """

 if hasattr(self, '_timestamp'):
 return self._timestamp

 @timestamp.setter
 def timestamp(self, timestamp: int) -> None:
 """ Sets the unix timestamp of the record.

 :param timestamp: The new unix timestamp of the record
 :type timestamp: int
 """

 self._timestamp = int(timestamp)

 @property
 def ttl(self) -> int:
 """ The record's time to live in seconds.
 """

 if hasattr(self, '_ttl'):
 return self._ttl

 @ttl.setter
 def ttl(self, ttl: int) -> None:
 """ Sets the time to live of the record.

 :param ttl: The new time to live of the record
 :type ttl: int
 """

 self._ttl = int(ttl)

 @property
 def type(self) -> str:
 """ The type of the device.
 """

 if hasattr(self, '_device_type'):
 return self._device_type

 @type.setter
 def type(self, device_type: str) -> None:
 """ Sets the type of the device.

 :param device_type: A string of the key matching the DeviceType enum
 :type device_type: str
 """

 self._device_type = device_type

 @property
 def data(self) -> Dict[int, RecordPoint]:
 """ The device's raw data points.
 """

 if hasattr(self, '_data'):
 return self._data

 @data.setter
 def data(self, data: Dict[int, RecordPoint]) -> None:
 """ Sets the data of the device.

 :param data: A dictionary of device points to RecordPoints
 :type data: dict
 """

 self._data = data

 @property
 def parsed(self) -> Dict[str, RecordPoint]:
 """ The device's parsed data points.
 """

 if hasattr(self, '_parsed'):
 return self._parsed

 @parsed.setter
 def parsed(self, parsed: Dict[str, RecordPoint]) -> None:
 """ Sets the parsed data points.

 :param parsed: A dictionary of the parsed data points
 :type parsed: dict
 """

 self._parsed = parsed

[docs] def validate(self) -> bool:
 """ Self validates the record.

 :returns: True if valid, otherwise False
 :rtype: bool
 """

 try:
 jsonschema.validate(self.to_dict(), const.record_schema)
 return True
 except jsonschema.exceptions.ValidationError as exc:
 const.log.warn((
 'caught {self.__class__.__name__} validation error on the '
 'record `{to_dict}`, {exc} ...'
).format(self=self, to_dict=self.to_dict(), exc=str(exc)))
 return False

[docs] def to_dict(self) -> dict:
 """ Builds a serializable representation of the record.

 :returns: A serializable representation of the record
 :rtype: dict
 """

 return {
 'name': self.name,
 'device_name': self.device_name,
 'type': self.type,
 'timestamp': self.timestamp,
 'data': {
 str(point_number): record_point.to_dict()
 for (point_number, record_point) in self.data.items()
 },
 'parsed': {
 point_name: record_point.to_dict()
 for (point_name, record_point) in self.parsed.items()
 },
 'coord': {
 'lon': self.lon,
 'lat': self.lat
 },
 'ttl': self.ttl,
 'meta': self._meta
 }

 Source code for neat.pipe.mongodb

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import time

from .. import const
from ..models import Record
from ._common import AbstractPipe

import pymongo

[docs]class MongoDBPipe(AbstractPipe):
 """ A record pipe for MongoDB.

 .. note:: Records are always placed in the `neat` table.
 """

 def __init__(self, ip: str, port: int, table: str, entry_delay: int=600):
 """ Initializes the MongoDB pipe.

 :param ip: The IP of the MongoDB instance
 :type ip: str
 :param port: The port of the MongoDB instance
 :type port: int
 :param table: The table name of the table to place records into
 :type table: str
 :param entry_delay: Seconds between allowing records into the database
 :type entry_delay: int
 """

 (self._ip, self._port) = (ip, port)
 self._table_name = table
 (self._entry_register, self._entry_delay) = ({}, entry_delay)

 def __repr__(self):
 """ A string representation of the pipe.

 :returns: A string representation of the pipe
 :rtype: str
 """

 return ((
 '<{self.__class__.__name__} ({self._ip}:{self._port})>'
).format(self=self))

 @property
 def client(self) -> pymongo.MongoClient:
 """ The client attached to the MongoDB uri.

 .. warning:: MongoDB driver connections are not fork safe
 """

 # NOTE: since mongodb driver connections are not fork safe, setting
 # connect to False is required
 if not hasattr(self, '_client'):
 try:
 self._client = pymongo.MongoClient(
 self._ip, self._port, connect=False
)
 except pymongo.errors.ConnectionFailure as exc:
 const.log.error((
 'could not connect to mongodb server at '
 '`{self._ip}:{self._port}`, {exc.message} ...'
).format(self=self))
 raise exc
 return self._client

 @property
 def db(self):
 """ The database of the client to write to.
 """

 if not hasattr(self, '_db'):
 self._db = self.client[const.module_name]
 return self._db

 @property
 def table(self):
 """ The table of the database to write to.
 """

 if not hasattr(self, '_table'):
 self._table = self.db.collection[self._table_name]
 return self._table

[docs] def accept(self, record: Record) -> None:
 """ Accepts a record to be placed into the MongoDB instance.

 :param record: The record to be placed in the MongoDB instance
 :type record: Record
 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'handling `{record}` with `{self}` ...'
).format(self=self, record=record))
 last_write = time.time()
 insert = False
 try:
 last_write = (time.time() - self._entry_register[record.name])
 if last_write >= self._entry_delay:
 insert = True
 except KeyError as exc:
 self._entry_register[record.name] = time.time()
 insert = True
 if insert:
 const.log.debug((
 'commiting `{record}` records into `{self}` ...'
).format(self=self, record=record))
 self.table.insert_one({
 (k.replace('$', '') if k.startswith('$') else k): v
 for (k, v) in record.to_dict().items()
 })
 else:
 const.log.debug((
 'dropping `{record}` for `{self}`, time till next write is '
 '`{next_write}` seconds ...'
).format(
 self=self, record=record,
 next_write=(self._entry_delay - last_write)
))
 self.signal.send(self, record=record)

[docs] def validate(self) -> bool:
 """ Self validates the MongoDB pipe.

 :returns: True if the pipe is valid, otherwise False
 :rtype: bool
 """

 try:
 self.client
 return True
 except pymongo.errors.ConnectionFailure as exc:
 pass
 return False

 Source code for neat.pipe.rethinkdb

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import time
import threading
from typing import List

from .. import const
from ..models import Record
from ._common import AbstractPipe

import rethinkdb

[docs]class RethinkDBPipe(AbstractPipe):
 """ A record pipe for RethinkDB.

 .. note:: Records are always placed in the `neat` table.
 """

 def __init__(self, ip: str, port: int, table: str, clean_delay: int=300):
 """ Initializes the RethinkDB pipe.

 :param ip: The IP of the RethinkDB instance
 :type ip: str
 :param port: The port of the RethinkDB instance
 :type port: int
 :param table: The table name of the table to place records into
 :type table: str
 :param clean_delay: Seconds between cleaning dead records
 :type clean_delay: int
 """

 (self._ip, self._port) = (ip, port)
 self._table_name = table
 (self._last_cleaned, self._clean_delay) = (0, clean_delay)

 if self._table_name not in rethinkdb.table_list()\
 .run(self.connection):
 rethinkdb.table_create(self._table_name).run(self.connection)
 self.table = rethinkdb.table(self._table_name)

 self._cleaning_thread = threading.Thread(
 target=self._cleaning_scheduler,
 args=(self._clean_delay,)
)
 self._cleaning_thread.daemon = True
 const.log.info((
 'starting `{self}` cleaning thread as daemon '
 'on `{self._clean_delay}` second delay ...'
).format(self=self))
 self._cleaning_thread.start()

 def __repr__(self):
 """ A string representation of the pipe.

 :returns: A string representation of the pipe
 :rtype: str
 """

 return ((
 '<{self.__class__.__name__} ({self._ip}:{self._port})>'
).format(self=self))

 @property
 def connection(self):
 """ The client attached to the RethinkDB uri.

 .. warning:: RethinkDB driver connections are not thread safe
 """

 # NOTE: unfortunately rethinkdb driver connections are not thread safe
 # For this reason, a new connection must be initalized on each request
 try:
 connection = rethinkdb.connect(
 self._ip, self._port,
 db=const.module_name
)
 if const.module_name not in rethinkdb.db_list()\
 .run(connection):
 rethinkdb.db_create(const.module_name)\
 .run(connection)
 return connection
 except rethinkdb.errors.ReqlDriverError as exc:
 const.log.error((
 'could not connect to rethinkdb server at '
 '`{self._ip}:{self._port}`, {exc.message} ...'
).format(self=self, exc=exc))
 raise exc

 def _cleaning_scheduler(self, delay: float) -> None:
 """ Waits for a couple seconds before cleaning.

 :param delay: The number of seconds to wait before cleaning
 :type delay: float
 :returns: Does not return
 :rtype: None
 """

 while True:
 self.clean()
 time.sleep(delay)

[docs] def accept(self, record: Record) -> None:
 """ Accepts a record to be placed into the RethinkDB instance.

 :param record: The record to be placed into the RethinkDB instance
 :type record: Record
 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'commiting `{record}` records into `{self}` ...'
).format(self=self, record=record))
 self.table.insert(record.to_dict()).run(self.connection)
 self.signal.send(self, record=record)

[docs] def clean(self) -> None:
 """ Cleans dead records from the RethinkDB instance.

 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'cleaning expired records from `{self.table}` ...'
).format(self=self))
 deletion_results = self.table.filter(lambda record: (
 record['timestamp'] + record['ttl']
) <= time.time()).delete().run(self.connection)
 const.log.debug((
 'cleaned `{deleted_count}` records from `{self.table}` ...'
).format(self=self, deleted_count=deletion_results['deleted']))
 self._last_cleaned = time.time()
 return deletion_results['deleted']

[docs] def validate(self) -> bool:
 """ Self validates the RethinkDB pipe.

 :returns: True if the pipe is valid, otherwise False
 :rtype: bool
 """

 try:
 self.connection
 return True
 except rethinkdb.errors.ReqlDriverError as exc:
 pass
 return False

 Source code for neat.requester.obvius

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import urllib

from .. import const
from ._common import AbstractRequester

import blinker
import requests

[docs]class ObviusRequester(AbstractRequester):
 """ The requester for the Obvius server.
 """

 _request_endpoint = '/setup/devicexml.cgi'

 def __init__(
 self, device_id: int, obvius_ip: str,
 obvius_user: str, obvius_pass: str, obvius_port: int=80,
 timeout: int=10, **kwargs: dict
):
 """ The Obvius requester initializer.

 :param device_id: The id of the Obvius device to request
 :type device_id: int
 :param obvius_ip: The IP of the Obvius server
 :type obvius_ip: str
 :param obvius_user: The auth username of the Obvius server
 :type obvius_user: str
 :param obvius_pass: The auth password of the Obvius server (readonly)
 :type obvius_pass: str
 :param obvius_port: The port of the Obvius server (80)
 :type obvius_port: int
 :param timeout: The request timeout period (10 seconds)
 :type timeout: int
 :param kwargs: Any additional attributes for valid record creation
 :type kwargs: dict
 """

 self._device_id = device_id
 self._timeout = timeout
 (self._obvius_ip, self._obvius_port) = (obvius_ip, obvius_port)
 (self._obvius_user, self._obvius_pass) = (obvius_user, obvius_pass)
 self._meta = kwargs

 def __repr__(self):
 """ Generates string representation of the obvius requester.

 :returns: A string representation of the obvius requester
 :rtype: str
 """

 return ((
 '<{self.__class__.__name__} '
 '({self._obvius_ip}:{self._obvius_port}) {self._device_id}>'
).format(self=self))

[docs] def request(self) -> None:
 """ Request information from the obvius.

 :returns: Does not return
 :rtype: None
 """

 const.log.debug((
 'requesting device `{self._device_id}` status from '
 '`{self._obvius_ip}` ...'
).format(self=self))
 try:
 requests.get(
 urllib.parse.urljoin(
 (
 'http://{self._obvius_ip}:{self._obvius_port}'
).format(self=self),
 self._request_endpoint
),
 auth=(self._obvius_user, self._obvius_pass),
 params={'ADDRESS': self._device_id, 'TYPE': 'DATA'},
 hooks=dict(response=self.receive),
 timeout=self._timeout
)
 except requests.exceptions.ConnectTimeout as exc:
 const.log.error((
 'connection timeout occured after `{self._timeout}` seconds '
 'for device `{self._device_id}` at `{self._obvius_ip}` ...'
).format(self=self))

[docs] def receive(self, resp: requests.Response, *args, **kwargs) -> None:
 """ The receiver of information from the requester.

 :param resp: The response of the request
 :type resp: requests.Response
 :param args: Extra arguments of the request
 :type args: list
 :param kwargs: Extra named arguments of the request
 :type kwargs: dict
 :returns: Does not return
 :rtype: None
 """

 if resp.status_code == 200:
 const.log.debug((
 'received response from `{resp.url}` ...'
).format(resp=resp))
 self.signal.send(self, data=resp.text, meta=self._meta)
 else:
 const.log.error((
 'received invalid response from `{resp.url}` '
 '({resp.status_code}) ...'
).format(resp=resp))

 Source code for neat.scheduler.simple

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import time

from .. import const
from ._common import AbstractScheduler

[docs]class SimpleDelayScheduler(AbstractScheduler):
 """ The scheduler for simple requesters.

 .. note:: Required, that all subclasses call super initialization
 """

 def __init__(self, delay: float=1.0):
 """ The SimpleDelayScheduler scheduler initializer.

 :param delay: The delay to wait in between requests
 :type delay: float
 """

 super().__init__()
 self.delay = delay

 def __repr__(self):
 """ A string representation of the scheduler object.

 :returns: A string representation of the scheduler object
 :rtype: str
 """

 return (
 '<{self.name} delay={self.delay}>'
).format(self=self)

 @property
 def delay(self) -> float:
 """ The delay period in between scheduled requests.
 """

 return self._delay

 @delay.setter
 def delay(self, delay: float) -> None:
 """ Sets the scheduler's delay.

 :param delay: The new delay of the scheduler
 :type delay: float
 """
 self._delay = float(delay)

[docs] def run(self) -> None:
 """ Starts the infinite loop for signaling scheduled requests.

 :returns: Does not return
 :rtype: None
 """

 self.daemon = True
 while self.is_alive():
 self.signal.send(self)
 try:
 time.sleep(self.delay)
 except KeyboardInterrupt as exc:
 const.log.debug((
 'scheduler `{self}` was terminated ...'
).format(self=self))
 break

 Source code for neat.translator.obvius

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 Stephen Bunn (stephen@bunn.io)
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

import time
import importlib

from .. import const, device
from ..models import Record, RecordPoint
from ._common import AbstractTranslator

import bs4
import pint
import dateutil.parser

[docs]class ObviusTranslator(AbstractTranslator):
 """ The translator for Obvius devices.
 """

 supported_requesters = ('ObviusRequester',)
 _parser_pref = ['lxml', 'html.parser']
 _expression_unit_map = {
 # energy
 'kWh': 'kilowatthour',
 'Wh': 'watthour',
 'MWh': 'megawatthour',
 'VAh': 'volt_ampere * hour',
 'kVAh': 'kilovolt_ampere * hour',
 'MVAh': 'megavolt_ampere * hour',
 'VARh': 'volt_ampere * hour',
 'kVARh': 'kilovolt_ampere * hour',
 'MVARh': 'megavolt_ampere * hour',
 'Btu': 'btu',
 'kBtu': 'kilobtu',
 'MBtu': 'megabtu',
 'MMBtu': 'megabtu',
 'BtuE6': 'megabtu',
 'Ton-Hrs': 'ton * hour',
 'therms': 'thm',
 # power
 'W': 'watt',
 'mW': 'milliwatt',
 'kW': 'kilowatt',
 'MW': 'megawatt',
 'VA': 'volt_ampere',
 'kVA': 'kilovolt_ampere',
 'MVA': 'megavolt_ampere',
 'VAR': 'volt_ampere',
 'kVAR': 'kilovolt_ampere',
 'MVAR': 'megavolt_ampere',
 'Btu/hr': 'btu/hr',
 # voltage
 'Volts': 'volt',
 'mV': 'millivolt',
 'kV': 'kilovolt',
 'MV': 'megavolt',
 # current
 'Amps': 'amp',
 'mA': 'milliamp',
 # event counting
 'cycles': 'cycles',
 'pulses': '',
 'revolutions': 'revolution',
 'starts': '',
 # frequency
 'Hz': 'hertz',
 'kHz': 'kilohertz',
 'RPM': 'rpm',
 # resistance
 'Ohms': 'ohm',
 'kohms': 'kiloohm',
 # mass
 'kgs': 'kilogram',
 'Lbs': 'pound',
 'Tons': 'ton',
 # mass flow
 'kg/hr': 'kilogram/hour',
 'Lb/hr': 'pound/hour',
 # volume
 'Gallons': 'gallon',
 'Cubic Feet': 'foot ** 3',
 'Cubic Meters': 'meter ** 3',
 'Liters': 'liter',
 # volume flow
 'Cubic Feet/sec': 'foot ** 3/second',
 'Cubic Feet/min': 'foot ** 3/minute',
 'CFm': 'foot ** 3/minute',
 'CFM': 'foot ** 3/minute',
 'Cubic Feet/hr': 'foot ** 3/hour',
 'CFH': 'foot ** 3/hour',
 'Cubic Meters/hr': 'meter ** 3 / hour',
 'Gpm': 'gallon/minute',
 'Gph': 'gallon/hour',
 'MGD': 'megagallon/day',
 'Liters/sec': 'liter/second',
 'Liters/min': 'liter/minute',
 'Liters/hr': 'liter/hour',
 # velocity
 'MPH': 'mph',
 'KPH': 'kph',
 # temperature
 'Degrees C': 'degC',
 'Degrees F': 'degF',
 'C': 'degC',
 'F': 'degF',
 # humidity
 '%RH': '',
 # phase
 'Degrees': 'degree',
 # electrical
 'PF': '',
 'aPF': '',
 'dPF': '',
 # intensity
 'W/m^2': 'watt / meter ** 2',
 # dimensionless
 '%': '',
 'PPM': '',
 '': '',
 # time
 'days': 'day',
 'hours': 'hour',
 'minutes': 'minute',
 'seconds': 'second',
 'ms': 'millisecond',
 # pressure
 'Pa': 'pascal',
 'kPa': 'kilopascal',
 'inWC': '',
 'inAq': '',
 'inHg': 'inHg',
 'cmHg': 'cmHg',
 'mmHg': 'mmHg',
 }

 def __init__(self):
 """ Initiaalizes the Obvius translator.
 """

 self._unit_reg = pint.UnitRegistry(autoconvert_offset_to_baseunit=True)

 @property
 def parser(self) -> str:
 """ The `xml` parser to use for parsing the returned requester content.
 """

 if not hasattr(self, '_parser') or \
 self._parser not in self._parser_pref:
 for parser in self._parser_pref:
 if importlib.util.find_spec(parser):
 self._parser = parser
 break
 return self._parser

 @property
 def unit_map(self) -> dict:
 """ The mapping of Obvius units to valid pint units.
 """

 if not hasattr(self, '_unit_map'):
 self._unit_map = {}
 for (k, v) in self._expression_unit_map.items():
 self._unit_map[k] = self._unit_reg.parse_expression(v)
 return self._unit_map

[docs] def validate(self, data: str) -> bool:
 """ Checks if the data from the Obvius is valid.

 :param data: The data returned from a supported requester
 :type data: str
 :returns: True if the data is valid, otherwise False
 :rtype: bool
 """

 return int(
 bs4.BeautifulSoup(data, self.parser)
 .find('error').text
) == 0

[docs] def translate(self, data: str, meta: dict={}) -> None:
 """ Translates Obvius data to a record.

 :param data: The xml returned from the Obvius endpoint
 :type data: str
 :param meta: Any additional data given to the requester
 :type meta: dict
 :returns: Does not return
 :rtype: None
 """

 if self.validate(data):
 soup = bs4.BeautifulSoup(data, self.parser)
 for device_record in soup.find_all('devices'):
 # prepopulate the Record with meta fields that match
 record = Record(**meta)
 if not record.type or len(record.type) <= 0:
 const.log.warning((
 'no device type for `{record}`, '
 'default set to {device.DeviceType.UNKNOWN} ...'
).format(record=record, device=device))
 record.type = device.DeviceType.UNKNOWN.name
 try:
 # discover device type
 device_type = device.DeviceType[record.type]
 record.device_name = device_record.find('name').text
 for rec in device_record.find_all('record'):
 record.timestamp = time.time()
 rec_error = rec.find('error').text
 record_data = {}
 for point in sorted(
 rec.find_all('point'),
 key=lambda x: int(x.attrs['number'])
):
 # discover valid point values and units
 try:
 rec_point_value = float(point.attrs['value'])
 except ValueError:
 rec_point_value = None
 try:
 self.unit_map[point.attrs['units']]
 except KeyError:
 point.attrs['units'] = ''

 # add generated RecordPoint to record_data
 record_data[
 int(point.attrs['number'])
] = RecordPoint(
 name=point.attrs['name'],
 value=rec_point_value,
 unit=str(self.unit_map[
 point.attrs['units']
].units)
)

 # try and parse record data into reliable parsed data
 record.data = record_data
 (device_type_id, device_instance,) = device_type.value
 record.parsed = device_instance.parse(record)
 # send the generated record out to the engine
 self.signal.send(record)
 except KeyError as exc:
 const.log.error((
 'invalid device type `{exc.args[0]}` for '
 'record `{record}`, discarding record ...'
).format(exc=exc, record=record))
 break

Appstate NEAT

Appalachian State University’s networked energy appliance translator

Contents:

	Introductions
	Who We Are

	Why We’re Doing This Project

	Getting Started
	Developers

	Contributing

	Extending NEAT

	End Users

	Architecture
	Records

	Engine

	Schedulers

	Requesters

	Translators

	Device Types

	Pipes

	NEAT Package
	Module contents

	Subpackages

	Submodules

	neat.const module

	neat.client module

	neat.engine module

	neat.device module

Indices and tables

	Index

	Module Index

	Search Page

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Appstate NEAT

 		
 Introductions

 		
 Who We Are

 		
 Why We’re Doing This Project

 		
 Getting Started

 		
 Developers

 		
 Licensing

 		
 Versioning

 		
 Coding Conventions

 		
 Documentation Conventions

 		
 Testing Conventions

 		
 Logging Conventions

 		
 Installing Dependencies

 		
 Contributing

 		
 Issues

 		
 Pull Requests

 		
 Extending NEAT

 		
 New Devices

 		
 New Pipes

 		
 End Users

 		
 Architecture

 		
 Records

 		
 Engine

 		
 Schedulers

 		
 Requesters

 		
 Translators

 		
 Device Types

 		
 Pipes

 		
 NEAT Package

 		
 Module contents

 		
 Subpackages

 		
 neat.models package

 		
 neat.scheduler package

 		
 neat.requester package

 		
 neat.translator package

 		
 neat.pipe package

 		
 Submodules

 		
 neat.const module

 		
 neat.client module

 		
 neat.engine module

 		
 neat.device module

_images/architecture.png
Schedulers

5
n_schedued
on_data
Pipes Engine > Requesters
| on_recora
; v

RethinkDB

Translators

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

