
neat Documentation

Author

Aug 16, 2021

Contents:

1 Introductions 3
1.1 Who We Are . 3
1.2 Why We’re Doing This Project . 3

2 Getting Started 5
2.1 Developers . 5
2.2 Contributing . 8
2.3 Extending NEAT . 9
2.4 End Users . 9

3 Architecture 11
3.1 Records . 12
3.2 Engine . 13
3.3 Schedulers . 14
3.4 Requesters . 14
3.5 Translators . 15
3.6 Device Types . 15
3.7 Pipes . 15

4 NEAT Package 17
4.1 Module contents . 17
4.2 Subpackages . 17
4.3 Submodules . 22
4.4 neat.const module . 22
4.5 neat.client module . 22
4.6 neat.engine module . 23
4.7 neat.device module . 24

5 Indices and tables 27

Python Module Index 29

Index 31

i

ii

neat Documentation

Appalachian State University’s networked energy appliance translator

Contents: 1

neat Documentation

2 Contents:

CHAPTER 1

Introductions

Authors Sierra Milosh, Stephen Bunn, Nathan Davis, James Ward

1.1 Who We Are

We are two senior and two graduate level students at Appalachian State University under the SSTEM NSF funded
scholarship. Each semester, we get to choose a research project to work on with other students from the SSTEM
program. This semester, we chose to help create a dashboard for a student-run, student-funded group on campus
called the Renewable Energy Initiaitve.

1.2 Why We’re Doing This Project

The Renewable Energy Initiative at Appalachian State University gets a $5, self-imposed fee from each student per
semester to put towards renewable energy systems on campus. Recently, the REI passed a referendum that required
each new project proposal include in the plan and budget a data monitoring system. Over the past few years, the REI
has been putting a lot more time, effort, and money into monitoring all of the renewable energy systems on campus,
including PV (photovoltaic or solar) systems, solar thermal systems, and a wind turbine (previously the largest turbine
in North Carolina, to boot). We want to be able to track data on each system for several reasons:

1. So that we can see when a system isn’t running properly and begin to address the problem. The monitoring
systems track anywhere between 10 and 50 points of data per device, so the ability to see both live and historical
data allows for a more comprehensive analysis of what might be going wrong within the system.

2. So that we can use the data to tell a story to people. We want our students to be involved with sustainability on
campus, so using real numbers to tell a story about our renewable energy systems on campus (that their student
funds have paid for) is on the top of our priority list. We would like to be able to talk about how much energy
each system is producing, and how that energy production ranks among the other renewable energy systems on
campus.

3. So that we have easily accessible data to be used for reports. Appalachian’s commitment to sustainability
is ranked among hundreds of other universities in the country through massive reports like the STARS report

3

neat Documentation

and the Greenhouse Gas Inventory. We would like to be able to go in and easily access data to fill in these
comprehensive reports.

But primarily, the goal of the REI is to get students involved with renewable energy that they are funding on campus.
We want to have clean, historical, and live data to bring it down a level and talk to students about what is happening
on their campus.

Currently, the Renewable Energy Initiative is pouring in $10,000 from our $150,000 budget to (unnamed company) to
create a dashboard that displays the data from our systems on campus in understandable graphs. The REI is unsatisfied
with the current company, as:

• Data is not technically live (it uploads via FTP every 15 minutes).

• The graphs are not very customizable – The user cannot go in and add whichever features they please to any
graph – They instead have to set up a call with (unnamed company) to try to get those features added, and
(unnamed company) does not always know how to add the desired features.

• The REI has to create virtual meters because the (unnamed company) does not support certain devices – The
REI had to consolidate all of the information into one big table with all of the desired devices and units.

4 Chapter 1. Introductions

CHAPTER 2

Getting Started

2.1 Developers

The following subsections detail what is required for various tasks during development.

2.1.1 Licensing

The neat framework is licensed under the GNU GPLv3 license. This is a strong copyleft license which basically
means that permissions are conditioned on making available complete source code of licensed works and modifications
(including larger works). This license was chosen with upmost care as we feel that the potential of this project may
encourage future use of renewable energy appliances in conjunction with this system. We found our decision on the
basis that any form of software built to aid the future of renewable energy adoption should be free and open to the
public for consumption.

2.1.2 Versioning

The neat framework strictly follows Semantic Versioning 2.0.0 as proposed by Tom Preston-Werner. The in-house
development period is to follow the 0.x.x standard until the initial release of a full scale product (at which time will
change to its first major release).

2.1.3 Coding Conventions

NEAT source follows the PEP8 - Style Guide for Python Code the more recently named pycodestyle. The only
exception to this style guide is the rule on line length. This rule has been omitted simply because of its occasional
annoyance. Code written in in this project should still try to adhere to the 79 character limit while documentation
should stay under the 72 character limit.

You can disable the checking of line length by passing the error code E501 as a value into the ignore list of pep8. For
example pep8 --ignore=E501 ./. We highly recommend you install a linter plugin for you editor that follows
the pycodestyle (pep8) format.

5

https://www.gnu.org/licenses/gpl-3.0.en.html
http://semver.org
https://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/pycodestyle
https://www.python.org/dev/peps/pep-0008/#maximum-line-length

neat Documentation

2.1.4 Documentation Conventions

In-code documentation utilizes Python’s docstrings but does not follow PEP 257. Instead, NEAT follows Sphinx’s
info field lists as its docstring format. Please adhere to this standard as future documentation builds become more and
more difficult to accurately make the more deviations are made away from this format.

In addition, Python source files identify themselves using the following header.

#!/usr/bin/env python
-*- encoding: utf-8 -*-
#
Copyright (c) 2017 {{author}} ({{contact}})
GNU GPLv3 <https://www.gnu.org/licenses/gpl-3.0.en.html>

Where the following apply:

{{author}} The initial author of the file

{{contact}} The contact email for the initial author of the file

We understand that this header is a pain to manually add on each commit. That is why we suggest you use a modern
code editor such as Sublime Text 3 or more preferably Atom and utilize their respective file header plugins FileHeader
and file-header. Please follow this standard as it makes documentation 10x easier for current and future documentation
systems.

NEAT depends on Sphinx as its documentation builder. This requires the sphinx toolkit to be installed on the user’s
system which is extremely easy to do. By executing the following command outside of any Python virtual environ-
ments will ensure that the latest version of the Sphinx toolkit (and its dependencies) is installed and available on your
system.

pip install sphinx

This dependency is also already listed in the project’s requirements.txt.

After you have the Sphinx toolkit, documentation can be built by executing the make html command within the
documentation directory (docs). However, changes outside of autodoc, which manages in-code docstrings, need to
be written in reStructuredText and pointed to by the index.rst. For more information, simply go through Sphinx’s
First Steps with Sphinx.

2.1.5 Testing Conventions

NEAT tests are written using Python’s standard unittest module. However, tests are executed via the nose framework.

Unittests for neat require both nose and codecov. These packages are not listed Tests should be run from the root
directory of the repository using the following command:

nosetests --with-coverage

The .coveragerc file defines what folders to run tests for and what files to avoid testing.

We use a continuous integration system, TravisCI, to continually check test cases on public pushes to the GitHub
repository. We also utilize codecov, which presents code coverage as reported by TravisCI after each public push. The
configuration for continuous integration can be found in the standard .travis.yml file, found in the root of the
repository.

2.1.6 Logging Conventions

Logging is enabled by default and runs on the logging.Logger DEBUG level. The default logging format is:

6 Chapter 2. Getting Started

https://www.python.org/dev/peps/pep-0257/
http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists
https://www.sublimetext.com/3
https://atom.io/
https://packagecontrol.io/packages/FileHeader
https://atom.io/packages/file-header
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/tutorial.html
https://docs.python.org/3.6/library/unittest.html
https://nose.readthedocs.io/en/latest/
https://pypi.python.org/pypi/codecov
https://travis-ci.org/

neat Documentation

%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s<%(funcName)s> %(message)s

The neat framework also comes with a custom logging exception handler which logs exceptions. All of these logging
properties can be modified by changing the values of the neat constants:

import logging
import neat

log any exceptions that occur
neat.const.log_exceptions = True

update the logging level so just INFO and greater logs are displayed
neat.const.log_level = logging.INFO

update the logging format so just the message is displayed
neat.const.log_format = '%(message)s'

Logs are stored on stdout as well as stored in a rotating file handler. A certain days logs are stored under the
/logs/{year}/{month} directory in the {month}{day}{year}.log files. For example, the following log
file path is for logs created on April 1, 2017:

/logs/2017/4/04012017.log

Log files are split every 1024 * 1024 bytes.

• Logs should primarily relay information about signal calls, and record transforms on the DEBUG level via
logging.debug('...').

• Any information about pipe connection status or general startup/shutdown information should be on the INFO
level via logging.info('...').

• Invalid input, data, configuration that doesn’t cause the runtime to crash should be on the WARNING level via
logging.warning('...').

• Any invalid state or unexpected error that causes the runtime to skip over some important logic should be on the
ERROR level via logging.error('...').

• Any state causing the framework to crash should be on the CRITICAL level via logging.critical('..
.').

• Finally, any caught exceptions that are used as quick fixes to errors should be logged on the EXCEPTION level
via log.exception('...').

Log lines typically also have ... appended to the end in order to accomodate external logging parsers. This line
ending is separated from the message of the log line by a space.

2.1.7 Installing Dependencies

NEAT depends on several packages provided by PyPi which need to be installed for NEAT to function correctly. These
should be installed into a virtual Python environment by using the virtualenv package. To set this up, first install
the virtualenv and virtualenvwrapper packages via pip.

pip install virtualenv virtualenvwrapper

Note, if working on Windows, it may be necessary to install the virtualenvwrapper-win module as well. This
simply takes the functionality of virtualenvwrapper and translates it to batch scripts which Windows systems
can run.

2.1. Developers 7

https://pypi.python.org/pypi

neat Documentation

After installing these packages you should now have access to several scripts such as mkvirtualenv, workon,
rmvirtualenv, and others. However, it may also be necessary to set a environmental variable to tell the installed
scripts where to setup all virtual environments. This is typically done under the WORKON_HOME variable.

export WORKON_HOME=~/.virtualenvs/

This indicates that all virtual environments will be built and stored under the directory ~/.virtualenvs/

NEAT is built and developed using Python 3.5+, so it may be necessary to specify the version of Python to use when
creating a virtual environment.

mkvirtualenv --python=/usr/bin/python3 neat

This will create and place your current shell into the context of a new virtual environment neat (if it doesn’t exist
already). Note, most modern shells show an indication of what virtual environment you are currently located in. For
example, a common shell prompt. . .

/home/r/Documents/Github/neat $

may be transformed to something resembling. . .

(neat) /home/r/Documents/Github/neat $

Once inside of this virtual environment it is possible to install dependencies. All of NEATs dependencies are specified
in the requirements.txt file located in the root of the repository. This file follows pip’s requirements file format.
The dependencies listed in this file can be automatically installed using the virtual environment’s pip script by passing
the path to the requirements file after giving pip the -r flag.

pip install -r ./requirements.txt

If the pip installation goes successfully, then all listed requirements should be successfully installed to the virtual
environment. To get out of the virtual environment, simply use the deactivate command (only available inside of
a virtual environment). To re-enter a virtual environment, use the workon neat command, where neat is the name
of the virtual environment you created.

In order for the pipes to function correctly, the servers for a pipe’s database is required and must be running.

• RethinkDB for the RethinkDBPipe

• MongoDB for the MongoDBPipe

2.2 Contributing

The following subsections are for people who wish to contribute to the neat framework. We assume that if you want
to contribute, you will abide by the standards discussed in Developers.

2.2.1 Issues

Best issues are a short, self contained, correct example of the problem. Providing logs for when the error occured is
also very helpful.

2.2.2 Pull Requests

All pull requests must be done on the dev branch. Pull requests on the master branch should be ignored

8 Chapter 2. Getting Started

https://virtualenvwrapper.readthedocs.io/en/latest/command_ref.html
https://www.python.org/downloads/
https://www.rethinkdb.com/docs/install/
https://www.mongodb.com/download-center?jmp=nav
http://sscce.org
https://github.com/ritashugisha/neat/tree/dev

neat Documentation

2.3 Extending NEAT

The following subsections detail tasks required for extending the neat framework.

2.3.1 New Devices

For every new type of device that doesn’t go through the Obvius, a new concrete subclass of AbstractRequester
must be defined in order to retrieve the devices status. The amazing Requests package is provided by default in the in-
stallation of neat as well as BeautifulSoup and lxml for parsing XML typed content which should ease the effort of fu-
ture developers. It may also (most likely) be necessary to define a new concrete subclass of AbstractTranslator.
For each new type of device status format, a translator must be able to convert the status into a Record object for the
pipes to correctly handle.

2.3.2 New Pipes

If other forms of storage are needed, a new concrete subclass of AbstractPipe must be defined. These typically
need to handle all the logic of starting and maintaining a connection to the database (if developing a database-based
pipe) and creation and deletion of databases, tables, users and potentially entries. The only thing provided to the
database is a Record instance which must be deconstructed in however necessary to pass it through the pipe.

2.4 End Users

Typically end users should have to only configure the config file required by a client whose superclass is
AbstractClient. For example, NEAT comes with a BasicClient which uses YAML to indicate what is
required for the engine.

Starting the project can be done using a simple Python script which starts the client.

import neat
client = neat.BasicClient.from_config('PATH TO CONFIG')
client.start()

Logging and other configuration can be done by editing the constants before starting the client

import neat
import logging

neat.const.log_exceptions = True
neat.const.log_level = logging.DEBUG

In order for pipes to function correctly, the client servers for the desired pipes must be started before running the neat
client. This can be done by starting the RethinkDB and MongoDB pipes in a separate process like the following:

rethinkdb -d /path/to/rethinkdb/storage/directory
mongodb --dp-path=/path/to/mongodb/storage/directory

2.3. Extending NEAT 9

http://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/
http://lxml.de
http://yaml.org

neat Documentation

10 Chapter 2. Getting Started

CHAPTER 3

Architecture

The NEAT project features the main communication engine as well as several appendages including mainly sched-
ulers, requesters, translators, and pipes. A simple communication visualization is shown in the figure below.

11

neat Documentation

These so called appendages are described within submodules of the main neatmodule as generalized in the following
file structure. As you can see, the following folder structure allows for separated logic in each of the submodules while
keeping connection and communication logic within the engine:

neat
const.py
client.py
engine.py
device.py
scheduler

__init__.py
_common.py
simple.py
...

requester
__init__.py
_common.py
obvius.py
...

translator
__init__.py
_common.py
obvius.py
...

pipes
__init__.py
_common.py
rethinkdb.py
...

Submodule structure mainly includes the __init__.py and the _common.py files. The _common.py exports
an abstract class which all valid concrete classes should extend. For example in requesters/_common.py an
abstract class AbstractRequester is exported which the ObviusRequester extends. The exported classes
from the submodule should include the abstract class as well as any other concrete classes for that submodule. Because
of this, concrete classes must be uniquely named and preferably have a matching suffix to their superclass. For
example, as previously shown the AbstractRequester is the superclass for the ObviusRequester. The
matching suffix of these two objects would in this case be Requester. Other submodules with abstract and concrete
classes should following this convention for readability reasons.

The following sections will describe in greater detail the objectives, responsibilities, and structure of the engine as
well as the previously listed submodules.

3.1 Records

The generic data model which neat produces is the Record object found in models/record.py. This object
specifies the to_dict method which compresses the useful object information into a dictionary using the following
format (a more formal jsonschema can be found in schemas/record.json):

{
"meta": {},
"name": "primary key unique name",
"device_name": "human readable non-unique name",
"type": "DEVICE_TYPE",
"timestamp": 1234567890,
"coord": {

(continues on next page)

12 Chapter 3. Architecture

http://json-schema.org/

neat Documentation

(continued from previous page)

"lon": 123.456789,
"lat": -123.456789

},
"data": {
"0": {

"name": "unreliable-name",
"value": 12.3456789,
"units": "PINT_UNIT"

}
},
"parsed": {
"reliable-name": {

"value": 12.3456789,
"unit": "PINT_UNIT"

}
}

}

This top-level json object is built from the Record object in models/record.py. The shorter json objects in the
data and parsed fields are built from the RecordPoint object also in models/record.py. It’s easy to see that
the record point stores information about a data point such as the name, value, and an understandable unit expression
from the pint module’s vanilla unit registry.

3.2 Engine

The engine’s purpose is to manage communication between schedulers, requesters, translators, and pipes. It does this
by hooking into the schedulers, requesters, and translators blinker signal in order to capture asynchronous output from
the different running processes.

The engine should be accessed directly from the top-level module as the Engine class. Schedulers are mapped 1 to
1 with their scheduled requesters in the engine’s private _register attribute on initialization of the engine. Along
with this mapping the desired pipes are also passed into the engine on initialization as a list of pipe objects. Note in
the following intialization example that a single SimpleDelayScheduler is mapped to a ObviusRequester
for the engine’s register while a single RethinkDBPipe is given engine.

import neat
engine = neat.Engine({

neat.scheduler.SimpleDelayScheduler(...):
neat.requester.ObviusRequester(...)

}, pipes=[neat.pipe.RethinkDBPipe(...)])

The engine’s logic flow works as the following:

1. Schedulers are started as their own child processes of the engine

2. A scheduler communicates over its signal when its requester should run

3. Engine intercepts the scheduler’s signal with the on_scheduled method

4. Engine determines what requester should run and calls the request() method

5. A requester communicates over its signal when it receives data

6. Engine intercepts the requester’s signal with the on_data method

7. Engine determines which translator is capable of translating the received data and calls the translatemethod

8. A translator communicates over its signal when the Record model has been built successfully

3.2. Engine 13

https://pint.readthedocs.io/
https://pythonhosted.org/blinker/

neat Documentation

9. Engine intercepts the translator’s signal with the on_record method

10. Engine throws the record into each of the valid pipes via the accept() method

11. Pipes handle any necessary storage logic

3.3 Schedulers

The purpose of a scheduler is to provide a way of telling the engine when a requester should be called. Because these
schedulers must execute with their own specific time-frames they are subclasses of AbstractScheduler which
itself is a subclass of multiprocessing.Process allowing these schedulers to be run as children processes of
the process containing neat’s engine. The AbstractScheduler provides an anonymous blinker signal attribute
and requires that concrete classes implement a run() method which starts (most likely) an infinite loop of request
scheduling logic.

Although new schedulers may need to take into account device specific refresh rates or communication rules, most of
the time the best option is to use the already provided SimpleDelayScheduler from scheduler/simple.py
which employs a delay by sleeping the process for a specified second delay.

Note: Because schedulers are subclasses of multiprocessing.Process if an __init__ method is required
of a concrete scheduler, the superclass’s __init__ must be called before any attribute assignment.

For example, the SimpleDelayScheduler requires an input parameter to specify the second delay which should
be used. The following simplified class snippet was used:

class SimpleDelayScheduler(AbstractScheduler):

def __init__(self, delay: float=1.0):
super().__init__()
self.delay = delay

3.4 Requesters

The purpose of a requester is to ensure that some device’s state is retrieved and passed back to the engine. As opposed
to schedulers, requesters are not their own spawned processes, instead they run alongside the engine when triggered
from the on_scheduled signal.

Concrete requesters must extend from AbstractRequester which also provides an abstract blinker signal and
requires that the requester implements a method request() which sends some request to a device for current status.
In order to keep blocking to a minimum, requesters utilize the requests module and specify request hooks to be most
optimal in not blocking engine execution. Once the data has been retrieved the requester instance as well as the
retrieved data and any additional named parameters to the requester’s initialization is sent back over the requesters
signal which can then be caught by the engine. These additional parameters are typically Record fields that need to
be user-specified due to the device not containing that information. An example of this is typically the longitude and
latitude of the device since many devices do not keep track of that information.

Take the following requester initialization for example:

requester = neat.requester.ObviusRequester(
obvius_ip='123.123.123.123',
obvius_port=80,
obvius_user='SOMEUSER',

(continues on next page)

14 Chapter 3. Architecture

http://docs.python-requests.org/en/master/

neat Documentation

(continued from previous page)

obvius_pass='SOMEPASS',
name='DEVICE_NAME',
type='DEVICE_TYPE',
lat=123.4567890,
lon=123.4567890

)

In this instance, although ObviusRequester cannot handle lat and lon in requester initialization, it still requires
those fields in order for the translator to have those fields handy when building the Record. Therefore, the extraneous
fields which cannot be used in initialization for the requester are included in the signal along with the data and the
requester instance.

3.5 Translators

The purpose of a translator is to provide a simple interface to create a Record object from some data retrieved by
a requester. A single given translator may be acceptable for translating multiple formats of data. This is specified
in the supported_requesters attribute of a concrete translator as a list of string class names of the supported
requesters.

Note: The current method of translator discovery is naive as it returns the first translator is sees which specifies
that it can handle data from a specific requester. This process can be seen in translators/__init__.py as
get_translator().

Valid concrete translators must extend from AbstractTranslator as usual. AbstractTranslator provides
an anonymous blinker signal and requires a translate() method for synchronously creating and sending the built
Record object over the provided signal.

Note the engine lazily instantiates the translators only when they are required. Therefore, initialization parameters to
concrete translators is currently not supported in the neat engine.

3.6 Device Types

The purpose of a device type is to ensure that the data comming in from multiple different types of devices from
multiple requesters can have their points generalized into the parsed field of a Record. The allowed device types
are stored in the device.py and are encapsulated within the DeviceType enumeration along with a unique hex-
adecimal id and an instance to the device. Correct parsing of the data fields currently relies on the parsed fields
contained within the config.yml. With the addition of new device types and different requesters that do no utilize
the Obvius’ device points, it may be neccessary to change the logic of the parse() function.

The parse() function takes the populated data fields along with the parsed config configuration to determine what
attributes of the record’s data to load and convert to a uniform pint unit. This information is the placed within the
parsed dictionary of the Record which can then be serialized for the pipe’s usage.

3.7 Pipes

The purpose of a pipe is to provide any and all logic for handling the storage created records into various different
formats. The provided concrete pipe is a RethinkDBPipe which places records into a rethinkdb database as they
come in.

3.5. Translators 15

https://pint.readthedocs.io/en/0.7.2/
https://www.rethinkdb.com/

neat Documentation

Valid pipes must extend from AbstractPipewhich provides an anonymous blinker signal and requires that the pipe
have an accept() method which accepts a single Record object. Once a record has been successfully committed
to wherever it needs to be, the pipe must send itself and the record over the provided signal where the engine can
intercept the signal in the on_complete signal.

16 Chapter 3. Architecture

CHAPTER 4

NEAT Package

4.1 Module contents

4.2 Subpackages

4.2.1 neat.models package

Module contents

Submodules

neat.models.record module

class neat.models.record.Record(**kwargs)
Bases: neat.models._common.AbstractModel

A model representation of a record.

data
The device’s raw data points.

device_name
The human readable name of the device.

lat
The latitude of the device.

lon
The longitude of the device.

name
The primary name of the device.

17

neat Documentation

parsed
The device’s parsed data points.

timestamp
The record’s creation unix timestamp.

to_dict()→ dict
Builds a serializable representation of the record.

Returns A serializable representation of the record

Return type dict

ttl
The record’s time to live in seconds.

type
The type of the device.

validate()→ bool
Self validates the record.

Returns True if valid, otherwise False

Return type bool

class neat.models.record.RecordPoint(**kwargs)
Bases: object

A record point representation.

Note: Not a subclass of neat.models._common.AbstractModel

name
The name of the record point.

number
The number of the record point.

to_dict()→ dict
Builds a serializable representation of the record point.

Returns A serializable representation of the record point

Return type dict

unit
The pint unit expression of the record point.

value
The value of the record point.

4.2.2 neat.scheduler package

Module contents

Submodules

18 Chapter 4. NEAT Package

neat Documentation

neat.scheduler.simple module

class neat.scheduler.simple.SimpleDelayScheduler(delay: float = 1.0)
Bases: neat.scheduler._common.AbstractScheduler

The scheduler for simple requesters.

Note: Required, that all subclasses call super initialization

delay
The delay period in between scheduled requests.

run()→ None
Starts the infinite loop for signaling scheduled requests.

Returns Does not return

Return type None

4.2.3 neat.requester package

Module contents

Submodules

neat.requester.obvius module

class neat.requester.obvius.ObviusRequester(device_id: int, obvius_ip: str, obvius_user:
str, obvius_pass: str, obvius_port: int = 80,
timeout: int = 10, **kwargs)

Bases: neat.requester._common.AbstractRequester

The requester for the Obvius server.

receive(resp: requests.models.Response, *args, **kwargs)→ None
The receiver of information from the requester.

Parameters

• resp (requests.Response) – The response of the request

• args (list) – Extra arguments of the request

• kwargs (dict) – Extra named arguments of the request

Returns Does not return

Return type None

request()→ None
Request information from the obvius.

Returns Does not return

Return type None

4.2. Subpackages 19

neat Documentation

4.2.4 neat.translator package

Module contents

neat.translator.get_translator(requester_name: str)→ neat.translator._common.AbstractTranslator
Tries to retrieve a supported translator given a requesters name.

Parameters requester_name (str) – The requester’s class name

Returns A supported translator

Return type AbstractTranslator

Submodules

neat.translator.obvius module

class neat.translator.obvius.ObviusTranslator
Bases: neat.translator._common.AbstractTranslator

The translator for Obvius devices.

parser
The xml parser to use for parsing the returned requester content.

supported_requesters = ('ObviusRequester',)

translate(data: str, meta: dict = {})→ None
Translates Obvius data to a record.

Parameters

• data (str) – The xml returned from the Obvius endpoint

• meta (dict) – Any additional data given to the requester

Returns Does not return

Return type None

unit_map
The mapping of Obvius units to valid pint units.

validate(data: str)→ bool
Checks if the data from the Obvius is valid.

Parameters data (str) – The data returned from a supported requester

Returns True if the data is valid, otherwise False

Return type bool

4.2.5 neat.pipe package

Module contents

Submodules

20 Chapter 4. NEAT Package

neat Documentation

neat.pipe.mongodb module

class neat.pipe.mongodb.MongoDBPipe(ip: str, port: int, table: str, entry_delay: int = 600)
Bases: neat.pipe._common.AbstractPipe

A record pipe for MongoDB.

Note: Records are always placed in the neat table.

accept(record: neat.models.record.Record)→ None
Accepts a record to be placed into the MongoDB instance.

Parameters record (Record) – The record to be placed in the MongoDB instance

Returns Does not return

Return type None

client
The client attached to the MongoDB uri.

Warning: MongoDB driver connections are not fork safe

db
The database of the client to write to.

table
The table of the database to write to.

validate()→ bool
Self validates the MongoDB pipe.

Returns True if the pipe is valid, otherwise False

Return type bool

neat.pipe.rethinkdb module

class neat.pipe.rethinkdb.RethinkDBPipe(ip: str, port: int, table: str, clean_delay: int = 300)
Bases: neat.pipe._common.AbstractPipe

A record pipe for RethinkDB.

Note: Records are always placed in the neat table.

accept(record: neat.models.record.Record)→ None
Accepts a record to be placed into the RethinkDB instance.

Parameters record (Record) – The record to be placed into the RethinkDB instance

Returns Does not return

Return type None

clean()→ None
Cleans dead records from the RethinkDB instance.

4.2. Subpackages 21

neat Documentation

Returns Does not return

Return type None

connection
The client attached to the RethinkDB uri.

Warning: RethinkDB driver connections are not thread safe

validate()→ bool
Self validates the RethinkDB pipe.

Returns True if the pipe is valid, otherwise False

Return type bool

4.3 Submodules

4.4 neat.const module

Module constants object.

exception neat.const.ModuleConstantException(message: str, code: int = None)
Bases: Exception

Custom exception for constants namespace.

4.5 neat.client module

class neat.client.AbstractClient
Bases: object

The basic class for all valid clients.

static from_config(config_path: str)
Creates a client from a config file.

Parameters config (str) – The path of the config file to load from

Returns An instance of the created client

Return type AbstractClient

start()→ None
Starts the engine.

Returns Does not return

Return type None

class neat.client.BasicClient(config: dict)
Bases: neat.client.AbstractClient

A very basic client for engine initalization.

static from_config(config: str)
Creates a BasicClient from a config file.

22 Chapter 4. NEAT Package

neat Documentation

Parameters config (str) – The path of the config file to load from

Returns An instance of the created BasicClient

Return type BasicClient

start()→ None
Starts the engine.

Returns Does not return

Return type None

4.6 neat.engine module

class neat.engine.Engine(register: Dict[neat.scheduler._common.AbstractScheduler,
neat.requester._common.AbstractRequester] = {}, pipes:
List[neat.pipe._common.AbstractPipe] = [])

Bases: object

Provides communication between all of the subpackages.

on_commit(piper: neat.pipe._common.AbstractPipe, record: neat.models.record.Record)→ None
Event handler for when pipes finish writing out a record.

Parameters

• piper (AbstractPipe) – The pipe who wrote the record out

• record (Record) – The record that was written

Returns Does not return

Return type None

on_data(requester: neat.requester._common.AbstractRequester, data: str, meta: dict)→ None
Event handler for when requesters get a response from their device.

Parameters

• requester (AbstractRequester) – The requester who retrieved the data

• data (str) – The data returned from the device

• meta (dict) – Any additional fields required to properly interpret data

Returns Does not return

Return type None

on_record(record: neat.models.record.Record)→ None
Event handler for when translators finish translation of some data.

Parameters record (Record) – The translated record

Returns Does not return

Return type None

on_scheduled(scheduler: neat.scheduler._common.AbstractScheduler)→ None
Event handler for when schedulers trigger their mapped requesters.

Parameters scheduler (AbstractScheduler) – The scheduler that needs to run its re-
quester

4.6. neat.engine module 23

neat Documentation

Returns Does not return

Return type None

on_start = <blinker.base.Signal object>

on_stop = <blinker.base.Signal object>

pipes
The list of pipe objects that are handling created records.

register
The mapping of schedulers to requesters.

start()→ None
Starts the engine.

Returns Does not return

Return type None

stop()→ None
Stops the engine.

Returns Does not return

Return type None

translators
The list of translator objects that have been needed.

4.7 neat.device module

class neat.device.AbstractDevice
Bases: object

The base class for all valid devices.

fields
The expected device fields.

name
The name of the device.

parse(record: neat.models.record.Record)→ Dict[str, neat.models.record.RecordPoint]
Parses a given record for the necessary device fields.

Parameters record (Record) – The record to parse

Returns A dictionary of field names mapped to record points

Return type dict

ureg
The unit registry for all devices.

class neat.device.DeviceType
Bases: enum.Enum

An enumeration of available device types.

Note: Maps types to instances not classes

24 Chapter 4. NEAT Package

neat Documentation

ENERGY = (5, <neat.device.EnergyDevice object>)

HVAC = (2, <neat.device.HVACDevice object>)

PV = (1, <neat.device.PVDevice object>)

SOLAR_THERM = (3, <neat.device.SolarThermalDevice object>)

TEMP = (6, <neat.device.TemperatureDevice object>)

UNKNOWN = (0, <neat.device.UnknownDevice object>)

WIND = (4, <neat.device.WindDevice object>)

class neat.device.EnergyDevice
Bases: neat.device.AbstractDevice

Defines a generic energy device.

fields = {}

name = 'Energy Device'

class neat.device.HVACDevice
Bases: neat.device.AbstractDevice

Defines a heating, ventilation, and cooling device.

fields = {}

name = 'HVAC Device'

class neat.device.PVDevice
Bases: neat.device.AbstractDevice

Defines a photovoltaic device.

fields = {}

name = 'PV Device'

class neat.device.SolarThermalDevice
Bases: neat.device.AbstractDevice

Defines a solar thermal device.

fields = {'energy_rate': 'btu / hour', 'energy_total': 'megabtu', 'flow_rate': 'gallon / minute', 'return_temp': 'degF', 'supply_temp': 'degF'}

name = 'Solar Thermal Device'

class neat.device.TemperatureDevice
Bases: neat.device.AbstractDevice

Defines a generic temperature device.

fields = {}

name = 'Temperature Device'

class neat.device.UnknownDevice
Bases: neat.device.AbstractDevice

Defines an unknown device type.

Note: Primarily used for Obvius virtual meters

fields = {}

4.7. neat.device module 25

neat Documentation

name = 'Unknown Device'

class neat.device.WindDevice
Bases: neat.device.AbstractDevice

Defines a wind based device.

fields = {'inverter_energy_total': 'kilowatthour', 'inverter_real': 'kilowatt', 'rotor_speed': 'rpm', 'wind_speed': 'mph'}

name = 'Wind Device'

26 Chapter 4. NEAT Package

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

27

neat Documentation

28 Chapter 5. Indices and tables

Python Module Index

n
neat (Unix), 17
neat.client, 22
neat.const, 22
neat.device, 24
neat.engine, 23
neat.models, 17
neat.models.record, 17
neat.pipe, 20
neat.pipe.mongodb, 21
neat.pipe.rethinkdb, 21
neat.requester, 19
neat.requester.obvius, 19
neat.scheduler, 18
neat.scheduler.simple, 19
neat.translator, 20
neat.translator.obvius, 20

29

neat Documentation

30 Python Module Index

Index

A
AbstractClient (class in neat.client), 22
AbstractDevice (class in neat.device), 24
accept() (neat.pipe.mongodb.MongoDBPipe method),

21
accept() (neat.pipe.rethinkdb.RethinkDBPipe

method), 21

B
BasicClient (class in neat.client), 22

C
clean() (neat.pipe.rethinkdb.RethinkDBPipe method),

21
client (neat.pipe.mongodb.MongoDBPipe attribute),

21
connection (neat.pipe.rethinkdb.RethinkDBPipe at-

tribute), 22

D
data (neat.models.record.Record attribute), 17
db (neat.pipe.mongodb.MongoDBPipe attribute), 21
delay (neat.scheduler.simple.SimpleDelayScheduler at-

tribute), 19
device_name (neat.models.record.Record attribute),

17
DeviceType (class in neat.device), 24

E
ENERGY (neat.device.DeviceType attribute), 24
EnergyDevice (class in neat.device), 25
Engine (class in neat.engine), 23

F
fields (neat.device.AbstractDevice attribute), 24
fields (neat.device.EnergyDevice attribute), 25
fields (neat.device.HVACDevice attribute), 25
fields (neat.device.PVDevice attribute), 25
fields (neat.device.SolarThermalDevice attribute), 25

fields (neat.device.TemperatureDevice attribute), 25
fields (neat.device.UnknownDevice attribute), 25
fields (neat.device.WindDevice attribute), 26
from_config() (neat.client.AbstractClient static

method), 22
from_config() (neat.client.BasicClient static

method), 22

G
get_translator() (in module neat.translator), 20

H
HVAC (neat.device.DeviceType attribute), 25
HVACDevice (class in neat.device), 25

L
lat (neat.models.record.Record attribute), 17
lon (neat.models.record.Record attribute), 17

M
ModuleConstantException, 22
MongoDBPipe (class in neat.pipe.mongodb), 21

N
name (neat.device.AbstractDevice attribute), 24
name (neat.device.EnergyDevice attribute), 25
name (neat.device.HVACDevice attribute), 25
name (neat.device.PVDevice attribute), 25
name (neat.device.SolarThermalDevice attribute), 25
name (neat.device.TemperatureDevice attribute), 25
name (neat.device.UnknownDevice attribute), 25
name (neat.device.WindDevice attribute), 26
name (neat.models.record.Record attribute), 17
name (neat.models.record.RecordPoint attribute), 18
neat (module), 17
neat.client (module), 22
neat.const (module), 22
neat.device (module), 24
neat.engine (module), 23

31

neat Documentation

neat.models (module), 17
neat.models.record (module), 17
neat.pipe (module), 20
neat.pipe.mongodb (module), 21
neat.pipe.rethinkdb (module), 21
neat.requester (module), 19
neat.requester.obvius (module), 19
neat.scheduler (module), 18
neat.scheduler.simple (module), 19
neat.translator (module), 20
neat.translator.obvius (module), 20
number (neat.models.record.RecordPoint attribute), 18

O
ObviusRequester (class in neat.requester.obvius), 19
ObviusTranslator (class in neat.translator.obvius),

20
on_commit() (neat.engine.Engine method), 23
on_data() (neat.engine.Engine method), 23
on_record() (neat.engine.Engine method), 23
on_scheduled() (neat.engine.Engine method), 23
on_start (neat.engine.Engine attribute), 24
on_stop (neat.engine.Engine attribute), 24

P
parse() (neat.device.AbstractDevice method), 24
parsed (neat.models.record.Record attribute), 17
parser (neat.translator.obvius.ObviusTranslator

attribute), 20
pipes (neat.engine.Engine attribute), 24
PV (neat.device.DeviceType attribute), 25
PVDevice (class in neat.device), 25

R
receive() (neat.requester.obvius.ObviusRequester

method), 19
Record (class in neat.models.record), 17
RecordPoint (class in neat.models.record), 18
register (neat.engine.Engine attribute), 24
request() (neat.requester.obvius.ObviusRequester

method), 19
RethinkDBPipe (class in neat.pipe.rethinkdb), 21
run() (neat.scheduler.simple.SimpleDelayScheduler

method), 19

S
SimpleDelayScheduler (class in

neat.scheduler.simple), 19
SOLAR_THERM (neat.device.DeviceType attribute), 25
SolarThermalDevice (class in neat.device), 25
start() (neat.client.AbstractClient method), 22
start() (neat.client.BasicClient method), 23
start() (neat.engine.Engine method), 24

stop() (neat.engine.Engine method), 24
supported_requesters

(neat.translator.obvius.ObviusTranslator
attribute), 20

T
table (neat.pipe.mongodb.MongoDBPipe attribute), 21
TEMP (neat.device.DeviceType attribute), 25
TemperatureDevice (class in neat.device), 25
timestamp (neat.models.record.Record attribute), 18
to_dict() (neat.models.record.Record method), 18
to_dict() (neat.models.record.RecordPoint method),

18
translate() (neat.translator.obvius.ObviusTranslator

method), 20
translators (neat.engine.Engine attribute), 24
ttl (neat.models.record.Record attribute), 18
type (neat.models.record.Record attribute), 18

U
unit (neat.models.record.RecordPoint attribute), 18
unit_map (neat.translator.obvius.ObviusTranslator at-

tribute), 20
UNKNOWN (neat.device.DeviceType attribute), 25
UnknownDevice (class in neat.device), 25
ureg (neat.device.AbstractDevice attribute), 24

V
validate() (neat.models.record.Record method), 18
validate() (neat.pipe.mongodb.MongoDBPipe

method), 21
validate() (neat.pipe.rethinkdb.RethinkDBPipe

method), 22
validate() (neat.translator.obvius.ObviusTranslator

method), 20
value (neat.models.record.RecordPoint attribute), 18

W
WIND (neat.device.DeviceType attribute), 25
WindDevice (class in neat.device), 26

32 Index

	Introductions
	Who We Are
	Why We’re Doing This Project

	Getting Started
	Developers
	Contributing
	Extending NEAT
	End Users

	Architecture
	Records
	Engine
	Schedulers
	Requesters
	Translators
	Device Types
	Pipes

	NEAT Package
	Module contents
	Subpackages
	Submodules
	neat.const module
	neat.client module
	neat.engine module
	neat.device module

	Indices and tables
	Python Module Index
	Index

